論文の概要: Multi-criteria Rank-based Aggregation for Explainable AI
- arxiv url: http://arxiv.org/abs/2505.24612v1
- Date: Fri, 30 May 2025 14:02:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.984931
- Title: Multi-criteria Rank-based Aggregation for Explainable AI
- Title(参考訳): 説明可能なAIのための多基準ランクベースアグリゲーション
- Authors: Sujoy Chatterjee, Everton Romanzini Colombo, Marcos Medeiros Raimundo,
- Abstract要約: 本稿では,複数の品質指標を同時にバランスさせて説明モデルのアンサンブルを生成する,複数基準のランクに基づく重み付け集約手法を提案する。
公開されているデータセットの実験は、これらのメトリクスにわたって提案されたモデルの堅牢性を示している。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability is crucial for improving the transparency of black-box machine learning models. With the advancement of explanation methods such as LIME and SHAP, various XAI performance metrics have been developed to evaluate the quality of explanations. However, different explainers can provide contrasting explanations for the same prediction, introducing trade-offs across conflicting quality metrics. Although available aggregation approaches improve robustness, reducing explanations' variability, very limited research employed a multi-criteria decision-making approach. To address this gap, this paper introduces a multi-criteria rank-based weighted aggregation method that balances multiple quality metrics simultaneously to produce an ensemble of explanation models. Furthermore, we propose rank-based versions of existing XAI metrics (complexity, faithfulness and stability) to better evaluate ranked feature importance explanations. Extensive experiments on publicly available datasets demonstrate the robustness of the proposed model across these metrics. Comparative analyses of various multi-criteria decision-making and rank aggregation algorithms showed that TOPSIS and WSUM are the best candidates for this use case.
- Abstract(参考訳): ブラックボックス機械学習モデルの透明性向上には、説明責任が不可欠だ。
LIMEやSHAPなどの説明手法の進歩により,説明の質を評価するために,様々なXAIパフォーマンス指標が開発されている。
しかし、異なる説明者は、矛盾する品質指標間のトレードオフを導入し、同じ予測に対して対照的な説明を提供することができる。
利用可能な集約アプローチは堅牢性を改善し、説明の多様性を低下させるが、非常に限定的な研究は多基準意思決定アプローチを採用した。
このギャップに対処するために,複数の品質指標を同時にバランスさせて説明モデルのアンサンブルを生成する,複数基準のランクに基づく重み付け集約手法を提案する。
さらに,既存のXAI指標(複雑度,忠実度,安定度)のランクベースバージョンを提案する。
公開されているデータセットに関する大規模な実験は、これらの指標にまたがって提案されたモデルの堅牢性を示している。
ToPSIS と WSUM が最適候補であることを示す多基準意思決定アルゴリズムとランク集約アルゴリズムの比較分析を行った。
関連論文リスト
- EVA-MILP: Towards Standardized Evaluation of MILP Instance Generation [13.49043811341421]
混合整数線形プログラミング(MILP)は、複雑な意思決定問題を解決するための基礎となる。
多様なデータセットに対する機械学習の需要により,MILPインスタンス生成手法の普及が加速し,標準化された評価手法が大幅に向上した。
本稿では,MILPインスタンス生成手法の体系的および客観的評価を目的とした総合ベンチマークフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-30T16:42:15Z) - Ranked from Within: Ranking Large Multimodal Models for Visual Question Answering Without Labels [64.94853276821992]
大規模マルチモーダルモデル(LMM)は、様々なアプリケーションにまたがってますます展開されている。
従来の評価方法は、主にデータセット中心であり、固定されたラベル付きデータセットと教師付きメトリクスに依存している。
ソフトマックス確率などの不確実性信号を利用したLMMの教師なしモデルランキングについて検討する。
論文 参考訳(メタデータ) (2024-12-09T13:05:43Z) - BEExAI: Benchmark to Evaluate Explainable AI [0.9176056742068812]
本稿では,ポストホックXAI手法の大規模比較を可能にするベンチマークツールであるBEExAIを提案する。
説明の質と正確性を測定するための信頼性の高い方法の必要性が重要になっていると論じる。
論文 参考訳(メタデータ) (2024-07-29T11:21:17Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
本稿では、初期ベンチマークプラットフォームにおいて、様々なベンチマークデータセットと新しいパフォーマンス指標をまとめる。
我々のデータセットには、クラス条件の特徴に対する真実の説明が組み込まれています。
このプラットフォームは、それらが生成する説明の品質において、ポストホックなXAIメソッドのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-05-20T14:16:06Z) - Statistical Comparisons of Classifiers by Generalized Stochastic
Dominance [0.0]
いくつかの基準に関して、分類器を複数のデータセットで比較する方法については、まだ合意が得られていない。
本稿では, 意思決定理論の最近の展開を取り入れた, 鮮明な議論に新たな視点を加える。
我々のフレームワークは、支配という一般化された概念によって分類器をランク付けし、それは煩雑なものを強力に回避し、しばしば自己矛盾的であり、集約に依存していることを示している。
論文 参考訳(メタデータ) (2022-09-05T09:28:15Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - A Meta Survey of Quality Evaluation Criteria in Explanation Methods [0.5801044612920815]
説明可能な人工知能(XAI)において、説明方法とその評価が重要な問題となっている。
最も正確なAIモデルは透明性と理解性の低い不透明であるため、バイアスの検出と不確実性の制御には説明が不可欠である。
説明方法の品質を評価する際には、選択すべき基準が多々ある。
論文 参考訳(メタデータ) (2022-03-25T22:24:21Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Partial Order in Chaos: Consensus on Feature Attributions in the
Rashomon Set [50.67431815647126]
ポストホックなグローバル/ローカルな特徴属性法は、機械学習モデルを理解するために徐々に採用されている。
この手法により局所的・言語的特徴の半順序が生じることを示す。
これらの部分的な順序に現れる特徴間の関係は、既存のアプローチによって提供されたランクにも当てはまることを示す。
論文 参考訳(メタデータ) (2021-10-26T02:53:14Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。