Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification
- URL: http://arxiv.org/abs/2505.09619v3
- Date: Thu, 22 May 2025 13:49:33 GMT
- Title: Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification
- Authors: Pietro Cassieri, Aiman Faiz, Anna Maria De Roberto, Claudio Pascarelli, Gianvito Mitrano, Gianluca Fimiani, Marina Garofano, Genoveffa Tortora, Mariangela Lazoi, Claudio Passino, Alessia Bramanti, Giuseppe Scanniello,
- Abstract summary: The management of chronic Heart Failure (HF) presents significant challenges in modern healthcare.<n>We present a predictive model founded on Machine Learning (ML) techniques to identify patients at HF risk.
- Score: 3.952604803580729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The management of chronic Heart Failure (HF) presents significant challenges in modern healthcare, requiring continuous monitoring, early detection of exacerbations, and personalized treatment strategies. In this paper, we present a predictive model founded on Machine Learning (ML) techniques to identify patients at HF risk. This model is an ensemble learning approach, a modified stacking technique, that uses two specialized models leveraging clinical and echocardiographic features and then a meta-model to combine the predictions of these two models. We initially assess the model on a real dataset and the obtained results suggest that it performs well in the stratification of patients at HR risk. Specifically, we obtained high sensitivity (95\%), ensuring that nearly all high-risk patients are identified. As for accuracy, we obtained 84\%, which can be considered moderate in some ML contexts. However, it is acceptable given our priority of identifying patients at risk of HF because they will be asked to participate in the telemonitoring program of the PrediHealth research project on which some of the authors of this paper are working. The initial findings also suggest that ML-based risk stratification models can serve as valuable decision-support tools not only in the PrediHealth project but also for healthcare professionals, aiding in early intervention and personalized patient management. To have a better understanding of the value and of potentiality of our predictive model, we also contrasted its results with those obtained by using three baseline models. The preliminary results indicate that our predictive model outperforms these baselines that flatly consider features, \ie not grouping them in clinical and echocardiographic features.
Related papers
- Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics [8.692647930497936]
We use conformal analysis to quantify the predictive uncertainty of a vision transformer based foundation model.<n>We show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model.
arXiv Detail & Related papers (2025-03-31T08:06:00Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
This project aims to develop and assess predictive models for the timely identification of cardiac arrest incidents.
We employ machine learning algorithms like XGBoost, Gradient Boosting, and Naive Bayes, alongside a deep learning (DL) approach with Recurrent Neural Networks (RNNs)
Rigorous experimentation and validation revealed the superior performance of the RNN model.
arXiv Detail & Related papers (2024-09-03T19:18:16Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
We propose a framework for neurological prognostication of post-cardiac-arrest comatose patients using EEG data.
Our framework uses any dynamic survival analysis model that supports competing risks in the form of estimating patient-level cumulative incidence functions.
We demonstrate our framework by benchmarking three existing dynamic survival analysis models that support competing risks on a real dataset of 922 patients.
arXiv Detail & Related papers (2023-08-17T03:46:23Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
Heart failure is one of the major health hazard issues of our time and is a leading cause of death worldwide.
Data mining is the process of converting massive volumes of raw data created by the healthcare institutions into meaningful information.
Our study shows that only certain attributes collected from the patients are imperative to successfully predict the surviving possibility post heart failure.
arXiv Detail & Related papers (2021-08-30T16:42:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.