Quick-Draw Bandits: Quickly Optimizing in Nonstationary Environments with Extremely Many Arms
- URL: http://arxiv.org/abs/2505.24692v1
- Date: Fri, 30 May 2025 15:15:18 GMT
- Title: Quick-Draw Bandits: Quickly Optimizing in Nonstationary Environments with Extremely Many Arms
- Authors: Derek Everett, Fred Lu, Edward Raff, Fernando Camacho, James Holt,
- Abstract summary: We propose a novel policy to learn reward environments over a continuous space using Gaussian.<n>We show that our method efficiently learns continuous Lipschitz reward functions with $mathcalO*(sqrtT)$ cumulative regret. Furthermore, our method naturally extends to non-stationary problems with a simple modification.
- Score: 80.05851139852311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Canonical algorithms for multi-armed bandits typically assume a stationary reward environment where the size of the action space (number of arms) is small. More recently developed methods typically relax only one of these assumptions: existing non-stationary bandit policies are designed for a small number of arms, while Lipschitz, linear, and Gaussian process bandit policies are designed to handle a large (or infinite) number of arms in stationary reward environments under constraints on the reward function. In this manuscript, we propose a novel policy to learn reward environments over a continuous space using Gaussian interpolation. We show that our method efficiently learns continuous Lipschitz reward functions with $\mathcal{O}^*(\sqrt{T})$ cumulative regret. Furthermore, our method naturally extends to non-stationary problems with a simple modification. We finally demonstrate that our method is computationally favorable (100-10000x faster) and experimentally outperforms sliding Gaussian process policies on datasets with non-stationarity and an extremely large number of arms.
Related papers
- Catoni-Style Change Point Detection for Regret Minimization in Non-Stationary Heavy-Tailed Bandits [31.212504858546232]
We tackle the heavy-tailed piecewise-stationary bandit problem.<n>We provide a novel Catoni-style change-point detection strategy tailored for heavy-tailed distributions.<n>We introduce Robust-CPD-UCB, which combines this change-point detection strategy with optimistic algorithms for bandits.
arXiv Detail & Related papers (2025-05-26T14:40:47Z) - Variance-Dependent Regret Bounds for Non-stationary Linear Bandits [52.872628573907434]
We propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds.
We introduce two novel algorithms: Restarted Weighted$textOFUL+$ and Restarted $textSAVE+$.
Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary linear bandits under different settings.
arXiv Detail & Related papers (2024-03-15T23:36:55Z) - Thompson Exploration with Best Challenger Rule in Best Arm
Identification [66.33448474838342]
We study the fixed-confidence best arm identification problem in the bandit framework.
We propose a novel policy that combines Thompson sampling with a computationally efficient approach known as the best challenger rule.
arXiv Detail & Related papers (2023-10-01T01:37:02Z) - Proportional Response: Contextual Bandits for Simple and Cumulative
Regret Minimization [29.579719765255927]
We propose a new family of efficient bandit algorithms for the contextual bandit setting.
Our algorithms work with any function class, are robust to model misspecification, and can be used in continuous arm settings.
arXiv Detail & Related papers (2023-07-05T08:34:54Z) - PopArt: Efficient Sparse Regression and Experimental Design for Optimal
Sparse Linear Bandits [29.097522376094624]
We propose a simple and computationally efficient sparse linear estimation method called PopArt.
We derive sparse linear bandit algorithms that enjoy improved regret upper bounds upon the state of the art.
arXiv Detail & Related papers (2022-10-25T19:13:20Z) - Exploration in Linear Bandits with Rich Action Sets and its Implications
for Inference [23.364534479492715]
We show that the minimum eigenvalue of the expected matrix grows as $Omega(sqrtn) whenever the expected cumulative regret of the algorithm is $sqrtn)$.
We apply our result to two practical scenarios -- emphmodel selection and emphclustering in linear bandits.
arXiv Detail & Related papers (2022-07-23T20:25:07Z) - Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy [71.17938026619068]
We study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous.
We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy.
We show that our algorithm has a regret guarantee of $O(ksqrt(A-k+1)T log (|mathcalF|T))$.
arXiv Detail & Related papers (2021-02-15T19:10:52Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Robustness Guarantees for Mode Estimation with an Application to Bandits [131.21717367564963]
We introduce a theory for multi-armed bandits where the values are the modes of the reward distributions instead of the mean.
We show in simulations that our algorithms are robust to perturbation of the arms by adversarial noise sequences.
arXiv Detail & Related papers (2020-03-05T21:29:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.