論文の概要: Feature Attribution from First Principles
- arxiv url: http://arxiv.org/abs/2505.24729v1
- Date: Fri, 30 May 2025 15:53:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.052773
- Title: Feature Attribution from First Principles
- Title(参考訳): 第一原理からの特色
- Authors: Magamed Taimeskhanov, Damien Garreau,
- Abstract要約: あらゆる特徴帰属メソッドが満たすべき公理的フレームワークは、しばしば制限的すぎると我々は主張する。
公理を課すのではなく、最も単純なモデルに対する属性を定義することから始める。
深部ReLUネットワークの帰属を表すクローズドフォーム式を導出し,評価指標の最適化に向けて一歩踏み出した。
- 参考スコア(独自算出の注目度): 6.836945436656676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature attribution methods are a popular approach to explain the behavior of machine learning models. They assign importance scores to each input feature, quantifying their influence on the model's prediction. However, evaluating these methods empirically remains a significant challenge. To bypass this shortcoming, several prior works have proposed axiomatic frameworks that any feature attribution method should satisfy. In this work, we argue that such axioms are often too restrictive, and propose in response a new feature attribution framework, built from the ground up. Rather than imposing axioms, we start by defining attributions for the simplest possible models, i.e., indicator functions, and use these as building blocks for more complex models. We then show that one recovers several existing attribution methods, depending on the choice of atomic attribution. Subsequently, we derive closed-form expressions for attribution of deep ReLU networks, and take a step toward the optimization of evaluation metrics with respect to feature attributions.
- Abstract(参考訳): 特徴属性法は機械学習モデルの振る舞いを説明する一般的な手法である。
彼らは各入力特徴に重要なスコアを割り当て、モデルの予測への影響を定量化する。
しかし、これらの手法を実証的に評価することは重要な課題である。
この欠点を回避すべく、いくつかの先行研究では、あらゆる特徴帰属メソッドが満足すべき公理的フレームワークが提案されている。
本論では,このような公理は制約的すぎる場合が多く,それに応じて,ゼロから構築された新たな属性フレームワークを提案する。
公理を課すのではなく、最も単純なモデル、つまりインジケータ関数に対する属性を定義し、より複雑なモデルのためのビルディングブロックとして使用することから始める。
次に、原子の帰属の選択に応じて、既存の帰属法を復元することを示す。
その後、深部ReLUネットワークの帰属に関するクローズドフォーム式を導出し、特徴帰属に関する評価指標の最適化に向けて一歩踏み出した。
関連論文リスト
- Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors [61.92704516732144]
正当性予測の最も堅牢な特徴は、モデルの振舞いに特徴的な因果的役割を果たすものであることを示す。
モデル出力の正しさを予測するために因果メカニズムを利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2025-05-17T00:31:39Z) - Explaining Modern Gated-Linear RNNs via a Unified Implicit Attention Formulation [54.50526986788175]
効率的なシーケンスモデリングの最近の進歩は、Mamba、RWKV、および様々なゲートRNNのような注意のないレイヤーを生み出している。
我々はこれらのモデルの統一的なビューを示し、暗黙の因果自己注意層のような層を定式化する。
筆者らのフレームワークは,異なるレイヤに対する類似の基盤となるメカニズムを比較検討し,説明可能性の手法を直接適用する手段を提供する。
論文 参考訳(メタデータ) (2024-05-26T09:57:45Z) - When factorization meets argumentation: towards argumentative explanations [0.0]
因数分解に基づく手法と議論フレームワーク(AF)を組み合わせた新しいモデルを提案する。
我々のフレームワークは、ユーザコンテキストなどのサイド情報をシームレスに組み込んで、より正確な予測を可能にします。
論文 参考訳(メタデータ) (2024-05-13T19:16:28Z) - Impossibility Theorems for Feature Attribution [21.88229793890961]
そこで本研究では,適度にリッチなモデルクラスでは,任意の特徴属性法がモデル振る舞いを推測するランダムな推測において,確実に改善できないことを示す。
本研究は, 局所モデル行動の特徴付け, 突発的特徴の同定, アルゴリズム的リコースなど, 一般的なエンドタスクに適用する。
論文 参考訳(メタデータ) (2022-12-22T17:03:57Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Towards Unifying Feature Attribution and Counterfactual Explanations:
Different Means to the Same End [17.226134854746267]
本稿では,一組の反実例から特徴帰属説明を生成する手法を提案する。
本報告では, 帰属に基づく説明の妥当性を, その必要性と充足性の観点から評価するために, 対実例をいかに活用するかを示す。
論文 参考訳(メタデータ) (2020-11-10T05:41:43Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - A Unified Taylor Framework for Revisiting Attribution Methods [49.03783992773811]
我々はTaylor属性フレームワークを提案し、7つの主流属性メソッドをフレームワークに再構成する。
我々はTaylor属性フレームワークにおいて、良い属性の3つの原則を確立する。
論文 参考訳(メタデータ) (2020-08-21T22:07:06Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。