Advancing AI-assisted Hardware Design with Hierarchical Decentralized Training and Personalized Inference-Time Optimization
- URL: http://arxiv.org/abs/2506.00002v1
- Date: Mon, 21 Apr 2025 15:41:28 GMT
- Title: Advancing AI-assisted Hardware Design with Hierarchical Decentralized Training and Personalized Inference-Time Optimization
- Authors: Hao Mark Chen, Zehuan Zhang, Wanru Zhao, Nicholas Lane, Hongxiang Fan,
- Abstract summary: Large Language Models (LLMs) have sparked significant interest in AI-assisted hardware design generation.<n>We identify three critical challenges hindering the development of LLM-assisted hardware design generation.<n>This paper introduces a two-stage framework for AI-assisted hardware design by exploring decentralized training and personalized inference.
- Score: 3.29494205026308
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent years have witnessed a significant increase in the adoption of AI techniques to enhance electronic design automation. In particular, the emergence of Large Language Models (LLMs) has sparked significant interest in LLM-assisted hardware design generation, spanning applications from classical digital circuits to quantum computing. Despite substantial progress in this direction, the quality of LLM-generated hardware design still cannot meet the requirements for practical deployment. In this work, we identify three critical challenges hindering the development of LLM-assisted hardware design generation: 1) limited data availability, 2) varied data quality, 3) inadequate inference-time efficiency. To address these fundamental challenges, this paper introduces a two-stage framework for AI-assisted hardware design by exploring decentralized training and personalized inference. In the first stage, we propose to harness private domain design sources through a hierarchical decentralized training mechanism that addresses data-sharing constraints. To mitigate the impact of low-quality data, we identify optimization opportunities in hardware generation tasks, using user-defined metrics for model aggregation. The second stage focuses on client personalization to enhance both speed and quality. We introduce a new metric, Trueput, to analyze LLM-assisted hardware generation efficiency. To optimize Trueput, we implement personalized inference-time acceleration and customized sampling strategies. Evaluating both classical and quantum benchmarks, our experimental results demonstrate that the proposed two-stage framework can significantly improve the model capability for hardware design generation. As orthogonal enhancements to existing methods, our framework can achieve $33\% \sim 50\%$ semantic accuracy improvement and $2.3$ times speedup, depending on the difficulty of the generation tasks.
Related papers
- GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units [1.5845117761091052]
We introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units.<n>We show that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs.<n>We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines.
arXiv Detail & Related papers (2025-07-25T06:34:59Z) - Scaling Intelligence: Designing Data Centers for Next-Gen Language Models [0.13332839594069593]
Large Language Models (LLMs) demand a radical rethinking of data center architecture to ensure scalability, efficiency, and cost-effectiveness.<n>Our work provides a comprehensive co-design framework that jointly explores FLOPS, bandwidth and capacity, multiple network topologies, and popular parallelism/optimization strategies.<n>Our findings offer actionable insights and a practical roadmap for designing AI data centers.
arXiv Detail & Related papers (2025-06-17T22:29:37Z) - A Text-Based Knowledge-Embedded Soft Sensing Modeling Approach for General Industrial Process Tasks Based on Large Language Model [16.842988666530204]
Data-driven soft sensors (DDSS) have become mainstream methods for predicting key performance indicators in process industries.<n>Development requires complex and costly customized designs tailored to various tasks during the modeling process.<n>We propose a general framework named LLM-TKESS (large language model for text-based knowledge-embedded soft sensing) for enhanced soft sensing modeling.
arXiv Detail & Related papers (2025-01-09T08:59:14Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
We present SOLO, a single transformer for visiOn-Language mOdeling.<n>A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs.<n>In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM.
arXiv Detail & Related papers (2024-07-08T22:40:15Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
We propose a framework that leverages a pretrained Large Language Model (LLM) in conjunction with an FEM module to autonomously generate, evaluate, and refine structural designs.<n>LLM operates without domain-specific fine-tuning, using general reasoning to propose design candidates, interpret FEM-derived performance metrics, and apply structurally sound modifications.<n>Compared to Non- Sorting Genetic Algorithm II (NSGA-II), our method achieves faster convergence and fewer FEM evaluations.
arXiv Detail & Related papers (2024-04-26T16:41:24Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Measuring what Really Matters: Optimizing Neural Networks for TinyML [7.455546102930911]
neural networks (NNs) have experienced an unprecedented growth in architectural and computational complexity. Introducing NNs to resource-constrained devices enables cost-efficient deployments, widespread availability, and the preservation of sensitive data.
This work addresses the challenges of bringing Machine Learning to MCUs, where we focus on the ubiquitous ARM Cortex-M architecture.
arXiv Detail & Related papers (2021-04-21T17:14:06Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.