Probing Audio-Generation Capabilities of Text-Based Language Models
- URL: http://arxiv.org/abs/2506.00003v1
- Date: Sun, 04 May 2025 23:46:01 GMT
- Title: Probing Audio-Generation Capabilities of Text-Based Language Models
- Authors: Arjun Prasaath Anbazhagan, Parteek Kumar, Ujjwal Kaur, Aslihan Akalin, Kevin Zhu, Sean O'Brien,
- Abstract summary: This research investigates the extent to which Large Language Models can be prompted to generate audio.<n>We employ a three-tier approach, progressively increasing the complexity of audio generation.<n>Our findings reveal that while LLMs can generate basic audio features, their performance deteriorates as the complexity of the audio increases.
- Score: 5.4211188445379825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How does textual representation of audio relate to the Large Language Model's (LLMs) learning about the audio world? This research investigates the extent to which LLMs can be prompted to generate audio, despite their primary training in textual data. We employ a three-tier approach, progressively increasing the complexity of audio generation: 1) Musical Notes, 2) Environmental Sounds, and 3) Human Speech. To bridge the gap between text and audio, we leverage code as an intermediary, prompting LLMs to generate code that, when executed, produces the desired audio output. To evaluate the quality and accuracy of the generated audio, we employ FAD and CLAP scores. Our findings reveal that while LLMs can generate basic audio features, their performance deteriorates as the complexity of the audio increases. This suggests that while LLMs possess a latent understanding of the auditory world, their ability to translate this understanding into tangible audio output remains rudimentary. Further research into techniques that can enhance the quality and diversity of LLM-generated audio can lead to an improvement in the performance of text-based LLMs in generating audio.
Related papers
- PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs [16.820927353576774]
The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs.<n>We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries.<n>This paper presents a systematic investigation on how architectural design choices can affect that.
arXiv Detail & Related papers (2025-06-12T07:23:07Z) - From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data [55.2480439325792]
We introduce LISTEN, a contrastive-like training method designed to improve ALLMs' ability to distinguish between present and absent sounds.<n>We also extend BALSa to multi-audio scenarios, where the model either explains the differences between audio inputs or produces a unified caption.<n> Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance in audio understanding, reasoning, and instruction-following skills.
arXiv Detail & Related papers (2025-05-26T16:08:41Z) - Make Some Noise: Towards LLM audio reasoning and generation using sound tokens [19.48089933713418]
We introduce a novel approach that combines Variational Quantization with Flow Matching to convert audio into ultra-low discrete tokens of 0.23kpbs.<n>Our tokenizer outperforms a traditional VQ-VAE across various datasets with diverse acoustic events.
arXiv Detail & Related papers (2025-03-28T09:43:47Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks.
We propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation.
arXiv Detail & Related papers (2023-10-07T03:17:59Z) - VoiceLDM: Text-to-Speech with Environmental Context [22.29992463094861]
VoiceLDM is a model designed to produce audio that accurately follows two distinct natural language text prompts.
By utilizing pretrained contrastive language-audio pretraining (CLAP) and Whisper, VoiceLDM is trained on large amounts of real-world audio without manual annotations or transcriptions.
We show that VoiceLDM is capable of generating plausible audio that aligns well with both input conditions, even surpassing the speech intelligibility of the ground truth audio on the AudioCaps test set.
arXiv Detail & Related papers (2023-09-24T15:20:59Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
We present an audio-visual framework, which aims to fully exploit the potential of the audio modality for captioning.
We propose new local-global fusion mechanisms to improve information exchange across audio and video.
arXiv Detail & Related papers (2023-06-21T20:54:52Z) - AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head [82.69233563811487]
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition.
We propose a multi-modal AI system named AudioGPT, which complements LLMs with foundation models to process complex audio information.
arXiv Detail & Related papers (2023-04-25T17:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.