PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs
- URL: http://arxiv.org/abs/2506.10423v1
- Date: Thu, 12 Jun 2025 07:23:07 GMT
- Title: PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs
- Authors: Tony Alex, Wish Suharitdamrong, Sara Atito, Armin Mustafa, Philip J. B. Jackson, Imran Razzak, Muhammad Awais,
- Abstract summary: The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs.<n>We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries.<n>This paper presents a systematic investigation on how architectural design choices can affect that.
- Score: 16.820927353576774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs. Although application-focused developments, particularly in curating training data for specific capabilities e.g., audio reasoning, have progressed rapidly, the underlying mechanisms that govern efficient transfer of rich semantic representations from audio encoders to LLMs remain under-explored. We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries. This paper presents a systematic investigation on how architectural design choices can affect that. Beginning with a standard Pengi/LLaVA-style audio-LLM architecture, we propose and evaluate several modifications guided by hypotheses derived from mechanistic interpretability studies and LLM operational principles. Our experiments demonstrate that: (1) delaying audio integration until the LLM's initial layers establish textual context that enhances its ability to probe the audio representations for relevant information; (2) the LLM can proficiently probe audio representations exclusively through LLM layer's attention submodule, without requiring propagation to its Feed-Forward Network (FFN) submodule; (3) an efficiently integrated ensemble of diverse audio encoders provides richer, complementary representations, thereby broadening the LLM's capacity to probe a wider spectrum of audio information. All hypotheses are evaluated using an identical three-stage training curriculum on a dataset of 5.6 million audio-text pairs, ensuring controlled comparisons. Our final architecture, which incorporates all proposed modifications, achieves relative improvements from 10\% to 60\% over the baseline, validating our approach to optimizing cross-modal information transfer in audio-LLMs. Project page: https://ta012.github.io/PAL/
Related papers
- DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment [94.0709779805955]
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM)<n>It is designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning.<n>DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks.
arXiv Detail & Related papers (2025-07-03T16:28:25Z) - From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data [55.2480439325792]
We introduce LISTEN, a contrastive-like training method designed to improve ALLMs' ability to distinguish between present and absent sounds.<n>We also extend BALSa to multi-audio scenarios, where the model either explains the differences between audio inputs or produces a unified caption.<n> Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance in audio understanding, reasoning, and instruction-following skills.
arXiv Detail & Related papers (2025-05-26T16:08:41Z) - Probing Audio-Generation Capabilities of Text-Based Language Models [5.4211188445379825]
This research investigates the extent to which Large Language Models can be prompted to generate audio.<n>We employ a three-tier approach, progressively increasing the complexity of audio generation.<n>Our findings reveal that while LLMs can generate basic audio features, their performance deteriorates as the complexity of the audio increases.
arXiv Detail & Related papers (2025-05-04T23:46:01Z) - Make Some Noise: Towards LLM audio reasoning and generation using sound tokens [19.48089933713418]
We introduce a novel approach that combines Variational Quantization with Flow Matching to convert audio into ultra-low discrete tokens of 0.23kpbs.<n>Our tokenizer outperforms a traditional VQ-VAE across various datasets with diverse acoustic events.
arXiv Detail & Related papers (2025-03-28T09:43:47Z) - Large Language Models are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities.<n>We propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities.<n>We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.79% and 0.77%, respectively.
arXiv Detail & Related papers (2024-09-18T21:17:27Z) - Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time [73.7845280328535]
We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio.
Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking.
We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
arXiv Detail & Related papers (2024-07-01T23:32:25Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
We introduce C3LLM, a novel framework combining three tasks of video-to-audio, audio-to-text, and text-to-audio together.
C3LLM adapts the Large Language Model (LLM) structure as a bridge for aligning different modalities.
Our method combines the previous tasks of audio understanding, video-to-audio generation, and text-to-audio generation together into one unified model.
arXiv Detail & Related papers (2024-05-25T09:10:12Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - Audio-Visual LLM for Video Understanding [25.963166809113005]
This paper presents Audio-Visual LLM, a Multimodal Large Language Model that takes both visual and auditory inputs for holistic video understanding.
We introduce a high-quality video instruction dataset, derived from GPT-4.
Experiments demonstrate that Audio-Visual LLM impressively achieves strong zero-shot results across a range of video understanding tasks.
arXiv Detail & Related papers (2023-12-11T02:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.