Gated Multimodal Graph Learning for Personalized Recommendation
- URL: http://arxiv.org/abs/2506.00107v1
- Date: Fri, 30 May 2025 16:57:17 GMT
- Title: Gated Multimodal Graph Learning for Personalized Recommendation
- Authors: Sibei Liu, Yuanzhe Zhang, Xiang Li, Yunbo Liu, Chengwei Feng, Hao Yang,
- Abstract summary: Multimodal recommendation has emerged as a promising solution to alleviate the cold-start and sparsity problems in collaborative filtering.<n>We propose RLMultimodalRec, a lightweight and modular recommendation framework that combines graph-based user modeling with adaptive multimodal item encoding.
- Score: 9.466822984141086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal recommendation has emerged as a promising solution to alleviate the cold-start and sparsity problems in collaborative filtering by incorporating rich content information, such as product images and textual descriptions. However, effectively integrating heterogeneous modalities into a unified recommendation framework remains a challenge. Existing approaches often rely on fixed fusion strategies or complex architectures , which may fail to adapt to modality quality variance or introduce unnecessary computational overhead. In this work, we propose RLMultimodalRec, a lightweight and modular recommendation framework that combines graph-based user modeling with adaptive multimodal item encoding. The model employs a gated fusion module to dynamically balance the contribution of visual and textual modalities, enabling fine-grained and content-aware item representations. Meanwhile, a two-layer LightGCN encoder captures high-order collaborative signals by propagating embeddings over the user-item interaction graph without relying on nonlinear transformations. We evaluate our model on a real-world dataset from the Amazon product domain. Experimental results demonstrate that RLMultimodalRec consistently outperforms several competitive baselines, including collaborative filtering, visual-aware, and multimodal GNN-based methods. The proposed approach achieves significant improvements in top-K recommendation metrics while maintaining scalability and interpretability, making it suitable for practical deployment.
Related papers
- FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
We propose textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequential textbfRecommendation)<n>A Stein kernel-based Integrated Information Coordination Module (IICM) theoretically guarantees distribution consistency between multimodal features and ID streams.<n>A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance.
arXiv Detail & Related papers (2025-07-07T04:09:45Z) - Gated Recursive Fusion: A Stateful Approach to Scalable Multimodal Transformers [0.0]
Gated Recurrent Fusion (GRF) is a novel architecture that captures the power of cross-modal attention within a linearly scalable, recurrent pipeline.<n>Our work presents a robust and efficient paradigm for powerful, scalable multimodal representation learning.
arXiv Detail & Related papers (2025-07-01T09:33:38Z) - Learning Item Representations Directly from Multimodal Features for Effective Recommendation [51.49251689107541]
multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations.<n>We propose a novel model (i.e., LIRDRec) that learns item representations directly from multimodal features to augment recommendation performance.
arXiv Detail & Related papers (2025-05-08T05:42:22Z) - M$^3$amba: CLIP-driven Mamba Model for Multi-modal Remote Sensing Classification [23.322598623627222]
M$3$amba is a novel end-to-end CLIP-driven Mamba model for multi-modal fusion.<n>We introduce CLIP-driven modality-specific adapters to achieve a comprehensive semantic understanding of different modalities.<n>Experiments have shown that M$3$amba has an average performance improvement of at least 5.98% compared with the state-of-the-art methods.
arXiv Detail & Related papers (2025-03-09T05:06:47Z) - Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation [4.518104756199573]
Molar is a sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively.<n>By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy.
arXiv Detail & Related papers (2024-12-24T05:23:13Z) - A Unified Graph Transformer for Overcoming Isolations in Multi-modal Recommendation [9.720586396359906]
We argue that existing multi-modal recommender systems typically use isolated processes for both feature extraction and modality modelling.
We propose a novel model, called Unified Multi-modal Graph Transformer (UGT), which leverages a multi-way transformer to extract aligned multi-modal features.
We show that the UGT model can achieve significant effectiveness gains, especially when jointly optimised with the commonly-used multi-modal recommendation losses.
arXiv Detail & Related papers (2024-07-29T11:04:31Z) - DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
We propose a novel multi-modal graph diffusion model for recommendation called DiffMM.
Our framework integrates a modality-aware graph diffusion model with a cross-modal contrastive learning paradigm to improve modality-aware user representation learning.
arXiv Detail & Related papers (2024-06-17T17:35:54Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.