Symmetry-deformed toric codes and the quantum dimer model
- URL: http://arxiv.org/abs/2506.00114v1
- Date: Fri, 30 May 2025 18:00:01 GMT
- Title: Symmetry-deformed toric codes and the quantum dimer model
- Authors: Jiaxin Qiao, Yoshito Watanabe, Simon Trebst,
- Abstract summary: We investigate symmetry-based deformations of topological order by systematically deconstructing the Gauss-law-enforcing star terms of the toric code (TC) Hamiltonian.<n>This "term-dropping" protocol introduces global symmetries that go beyond the alternative framework of "ungauging" topological order in symmetry-deformed models.
- Score: 0.24578723416255746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the recent introduction of a $U(1)$-symmetric toric code model, we investigate symmetry-based deformations of topological order by systematically deconstructing the Gauss-law-enforcing star terms of the toric code (TC) Hamiltonian. This "term-dropping" protocol introduces global symmetries that go beyond the alternative framework of "ungauging" topological order in symmetry-deformed models and gives rise to models such as the $U(1)$TC or $XY$TC. These models inherit (emergent) subsystem symmetries (from the original 1-form symmetry of the TC) that can give rise to (subextensive) ground-state degeneracies, which can still be organized by the eigenvalues of Wilson loop operators. However, we demonstrate that these models do not support topological or fracton order (as has been conjectured in the literature) due to the loss of (emergent) gauge symmetry. An extreme deformation of the TC is the quantum dimer model (QDM), which we discuss along the family of symmetry-deformed models from the perspective of subsystem symmetries, sublattice modulation, and quantum order-by-disorder mechanisms resulting in rich phase diagrams. For the QDM, this allows us to identify an emergent SO(2) symmetry for what appears to be a gapless ground state (by numerical standards) that is unstable to the formation of a plaquette valence bond solid upon sublattice modulation.
Related papers
- Meson spectroscopy of exotic symmetries of Ising criticality in Rydberg atom arrays [39.58317527488534]
Coupling two Ising chains in a ladder leads to an even richer $mathcalD(1)_8$ symmetries.<n>Here, we probe these emergent symmetries in a Rydberg atom processing unit, leveraging its geometry to realize both chain and ladder configurations.
arXiv Detail & Related papers (2025-06-26T14:19:30Z) - Lie symmetries and ghost-free representations of the Pais-Uhlenbeck model [44.99833362998488]
We investigate the Pais-Uhlenbeck (PU) model, a paradigmatic example of a higher time-derivative theory.<n>Exploiting Lie symmetries in conjunction with the model's Bi-Hamiltonian structure, we construct distinct Poisson bracket formulations.<n>Our approach yields a unified framework for interpreting and stabilising higher time-derivative dynamics.
arXiv Detail & Related papers (2025-05-09T15:16:40Z) - Detecting emergent 1-form symmetries with quantum error correction [5.505688971481444]
We propose a quantitative criterion for the existence of 1-form symmetries motivated by quantum error correction (QEC)<n>We analytically determine the regimes in which a 1-form symmetry emerges in product states on one- and two-dimensional lattices.<n>We show that once the 1-form symmetry is detected to exist, a topological quantum phase transitions characterized by the spontaneous breaking of the 1-form symmetry can be accurately detected.
arXiv Detail & Related papers (2025-02-24T19:00:14Z) - Predicting symmetries of quantum dynamics with optimal samples [41.42817348756889]
Identifying symmetries in quantum dynamics is a crucial challenge with profound implications for quantum technologies.<n>We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency.<n>We prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols.
arXiv Detail & Related papers (2025-02-03T15:57:50Z) - Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases [20.518529676631122]
We generalize the topological response theory to detect the boundary anomalies of linear subsystem symmetries.<n>This approach allows us to distinguish different subsystem symmetry-protected topological (SSPT) phases and uncover new ones.<n>Our work provides a numerical method to detect quantum anomalies of subsystem symmetries, offering new insights into the study of topological phases.
arXiv Detail & Related papers (2024-12-10T14:53:54Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.<n>This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Non-invertible and higher-form symmetries in 2+1d lattice gauge theories [0.0]
We explore exact generalized symmetries in the standard 2+1d lattice $mathbbZ$ gauge theory coupled to the Ising model.
One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases.
We discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
arXiv Detail & Related papers (2024-05-21T18:00:00Z) - Exotic Symmetry Breaking Properties of Self-Dual Fracton Spin Models [4.467896011825295]
We investigate the ground-state properties and phase transitions of two self-dual fracton spin models.
We show that both models experience a strong first-order phase transition with an anomalous $L-(D-1)$ scaling.
Our work provides new understanding of sub-dimensional symmetry breaking and makes an important step for studying quantum-error-correction properties of the checkerboard and Haah's codes.
arXiv Detail & Related papers (2023-11-18T13:12:14Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - On discrete symmetries of robotics systems: A group-theoretic and
data-driven analysis [38.92081817503126]
We study discrete morphological symmetries of dynamical systems.
These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology.
We exploit these symmetries using data augmentation and $G$-equivariant neural networks.
arXiv Detail & Related papers (2023-02-21T04:10:16Z) - Building 1D lattice models with $G$-graded fusion category [0.0]
Family of 1D quantum lattice models based on $G$-graded fusion category $mathcalC_G$.
The models display a set of unconventional global symmetries characterized by the input category $mathcalC_G$.
arXiv Detail & Related papers (2023-01-16T13:16:50Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Many-Body Quantum States with Exact Conservation of Non-Abelian and
Lattice Symmetries through Variational Monte Carlo [0.0]
We present an ansatz where global non-abelian symmetries are inherently embedded in its structure.
We extend the model to incorporate lattice symmetries as well.
arXiv Detail & Related papers (2021-04-30T09:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.