Privacy-Preserving Methods for Bug Severity Prediction
- URL: http://arxiv.org/abs/2506.22752v1
- Date: Sat, 28 Jun 2025 04:40:51 GMT
- Title: Privacy-Preserving Methods for Bug Severity Prediction
- Authors: Havvanur Dervişoğlu, Ruşen Halepmollası, Elif Eyvaz,
- Abstract summary: We investigate method-level bug severity prediction using source code metrics and Large Language Models.<n>We compare the performance of models trained using centralized learning, federated learning, and synthetic data generation.<n>Our finding highlights the potential of privacy-preserving approaches to enable effective bug severity prediction in industrial context.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bug severity prediction is a critical task in software engineering as it enables more efficient resource allocation and prioritization in software maintenance. While AI-based analyses and models significantly require access to extensive datasets, industrial applications face challenges due to data-sharing constraints and the limited availability of labeled data. In this study, we investigate method-level bug severity prediction using source code metrics and Large Language Models (LLMs) with two widely used datasets. We compare the performance of models trained using centralized learning, federated learning, and synthetic data generation. Our experimental results, obtained using two widely recognized software defect datasets, indicate that models trained with federated learning and synthetic data achieve comparable results to centrally trained models without data sharing. Our finding highlights the potential of privacy-preserving approaches such as federated learning and synthetic data generation to enable effective bug severity prediction in industrial context where data sharing is a major challenge. The source code and dataset are available at our GitHub repository: https://github.com/drvshavva/EASE2025-Privacy-Preserving-Methods-for-Bug-Severity-Prediction.
Related papers
- Collaborative Prediction: To Join or To Disjoin Datasets [5.9697789282446605]
We study the problem of developing practical algorithms that select appropriate dataset to minimize population loss.<n>By leveraging an oracle inequality and data-driven estimators, the algorithm reduces population loss with high probability.
arXiv Detail & Related papers (2025-06-12T20:25:07Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - An Investigation of Smart Contract for Collaborative Machine Learning
Model Training [3.5679973993372642]
Collaborative machine learning (CML) has penetrated various fields in the era of big data.
As the training of ML models requires a massive amount of good quality data, it is necessary to eliminate concerns about data privacy.
Based on blockchain, smart contracts enable automatic execution of data preserving and validation.
arXiv Detail & Related papers (2022-09-12T04:25:01Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerf is a community-led benchmark suite for evaluating ML datasets and data-centric algorithms.
We provide an open, online platform with multiple rounds of challenges to support this iterative development.
The benchmarks, online evaluation platform, and baseline implementations are open source.
arXiv Detail & Related papers (2022-07-20T17:47:54Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
We use a Bayesian paradigm to characterise the updating of model parameters when learning on synthetic data.
Recent results from general Bayesian updating support a novel and robust approach to synthetic-learning founded on decision theory.
arXiv Detail & Related papers (2020-11-16T21:49:17Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.