A novel sensitivity analysis method for agent-based models stratifies in-silico tumor spheroid simulations
- URL: http://arxiv.org/abs/2506.00168v2
- Date: Tue, 03 Jun 2025 13:21:46 GMT
- Title: A novel sensitivity analysis method for agent-based models stratifies in-silico tumor spheroid simulations
- Authors: Edward H. Rohr, John T. Nardini,
- Abstract summary: Agent-based models (ABMs) are widely used in biology to understand how individual actions scale into emergent population behavior.<n>Modelers employ sensitivity analysis (SA) algorithms to quantify input parameters' impact on model outputs.<n>We develop the Simulate, Summarize, Reduce, Cluster, and Analyze (SSRCA) methodology, a machine-learning based pipeline designed to facilitate SA for ABMs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agent-based models (ABMs) are widely used in biology to understand how individual actions scale into emergent population behavior. Modelers employ sensitivity analysis (SA) algorithms to quantify input parameters' impact on model outputs, however, it is hard to perform SA for ABMs due to their computational and complex nature. In this work, we develop the Simulate, Summarize, Reduce, Cluster, and Analyze (SSRCA) methodology, a machine-learning based pipeline designed to facilitate SA for ABMs. In particular, SSRCA can achieve the following tasks for ABMS: 1) identify sensitive model parameters, 2) reveal common output model patterns, and 3) determine which input parameter values generate these patterns. We use an example ABM of tumor spheroid growth to showcase how SSRCA provides similar SA results to the popular Sobol' Method while also identifying four common patterns from the ABM and the parameter regions that generate these outputs. This analysis could streamline data-driven tasks, such as parameter estimation, for ABMs by reducing parameter space. While we highlight these results with an ABM on tumor spheroid formation, the SSRCA methodology is broadly applicable to biological ABMs.
Related papers
- Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network [2.6130735302655554]
We introduce an adjoint sensitivity approach to expedite the learning of mechanistic model parameters.
In this paper, we consider enzymatic analysis (SA) representing a multi-scale bioprocess mechanistic model.
arXiv Detail & Related papers (2024-05-07T05:06:45Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.<n>We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.<n>We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Simulation-based Inference for Model Parameterization on Analog
Neuromorphic Hardware [1.843681725117436]
This study investigates the suitability of the sequential neural posterior estimation algorithm for parameterizing a multi-compartmental neuron model emulated on the BrainScaleS-2 system.
The SNPE algorithm belongs to the class of simulation-based inference methods and estimates the posterior distribution of the model parameters.
arXiv Detail & Related papers (2023-03-28T15:37:30Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Surrogate Assisted Strategies (The Parameterisation of an Infectious
Disease Agent-Based Model) [0.0]
calibration is a significant challenge in agent-based modelling and simulation.
We propose a more comprehensive and adaptive ABMS Framework that can effectively swap out parameterisation strategies and surrogate models.
We show in a real-world setting that DYCORS XGBoost and MSRS SVM can approximate the real world cumulative daily infection distribution.
arXiv Detail & Related papers (2021-08-19T17:27:01Z) - ADAVI: Automatic Dual Amortized Variational Inference Applied To
Pyramidal Bayesian Models [0.0]
We develop a novel methodology that automatically produces a variatonal family dual to a target parameter.
We demonstrate the capability of our method on simulated data, as well as a challenging high-dimensional brain parcellation experiment.
arXiv Detail & Related papers (2021-06-23T09:09:01Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Surrogate Assisted Methods for the Parameterisation of Agent-Based
Models [0.0]
calibration is a major challenge in agent-based modelling and simulation.
We propose an ABMS framework which facilitates the effective integration of different sampling methods and surrogate models.
arXiv Detail & Related papers (2020-08-26T21:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.