論文の概要: Constrained Bayesian Optimization under Bivariate Gaussian Process with Application to Cure Process Optimization
- arxiv url: http://arxiv.org/abs/2506.00174v1
- Date: Fri, 30 May 2025 19:24:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.479627
- Title: Constrained Bayesian Optimization under Bivariate Gaussian Process with Application to Cure Process Optimization
- Title(参考訳): Bivariate Gaussian プロセスにおける制約ベイズ最適化とキュアプロセス最適化への応用
- Authors: Yezhuo Li, Qiong Zhang, Madhura Limaye, Gang Li,
- Abstract要約: 我々は、目的関数と制約関数の間の独立ガウス過程の仮定に基づく制約付きベイズ最適化を開発する。
本稿では,製造工程の最適化に応用した提案手法の性能を示す。
- 参考スコア(独自算出の注目度): 14.891161644312666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Optimization, leveraging Gaussian process models, has proven to be a powerful tool for minimizing expensive-to-evaluate objective functions by efficiently exploring the search space. Extensions such as constrained Bayesian Optimization have further enhanced Bayesian Optimization's utility in practical scenarios by focusing the search within feasible regions defined by a black-box constraint function. However, constrained Bayesian Optimization in is developed based on the independence Gaussian processes assumption between objective and constraint functions, which may not hold in real-world applications. To address this issue, we use the bivariate Gaussian process model to characterize the dependence between the objective and constraint functions and developed the constrained expected improvement acquisition function under this model assumption. We show case the performance of the proposed approach with an application to cure process optimization in Manufacturing.
- Abstract(参考訳): ガウス過程モデルを利用するベイズ最適化は、探索空間を効率的に探索することで、高コストで評価可能な目的関数を最小化するための強力なツールであることが証明されている。
制約付きベイズ最適化のような拡張は、ブラックボックス制約関数によって定義された実現可能な領域内での探索を集中させることにより、実用シナリオにおけるベイズ最適化の実用性をさらに強化した。
しかし、制約ベイズ最適化は、現実の応用では成り立たないような目的関数と制約関数の間の独立ガウス過程の仮定に基づいて開発されている。
この問題に対処するために、両変数ガウス過程モデルを用いて、目的関数と制約関数の依存性を特徴づけ、このモデル仮定に基づいて制約付き予測改善獲得関数を開発した。
本稿では,製造工程の最適化に応用した提案手法の性能を示す。
関連論文リスト
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
非最適化は機械学習の中心であるが、一般の非凸性は弱い収束を保証するため、他方に比べて悲観的すぎる。
非凸アルゴリズムに新しい統一仮定を導入する。
論文 参考訳(メタデータ) (2025-02-17T21:25:31Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Online Calibrated and Conformal Prediction Improves Bayesian Optimization [10.470326550507117]
本稿では,モデルに基づく意思決定やベイズ最適化における不確実性について検討する。
しかし、キャリブレーションの維持は、データが定常的ではなく、我々の行動に依存する場合、困難である。
我々は、オンライン学習に基づく簡単なアルゴリズムを用いて、非i.d.データのキャリブレーションを確実に維持することを提案する。
論文 参考訳(メタデータ) (2021-12-08T23:26:23Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
本稿では,グローバル最適化のためのサンプル手法を提案する。
この中、重要なパフォーマンス決定の自明さは、取得機能を最大化することです。
3958実験における機能最適化手法の実証的利点を強調する。
論文 参考訳(メタデータ) (2020-12-15T12:18:38Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
本稿では,不確実なプロセスのリアルタイム最適化において,プラントモデルミスマッチを克服するための修飾子適応方式について検討する。
提案したスキームは物理モデルを組み込んでおり、探査中のリスクを最小限に抑えるために信頼領域のアイデアに依存している。
取得関数の使用、プロセスノイズレベルを知る、または名目上のプロセスモデルを指定する利点を図示する。
論文 参考訳(メタデータ) (2020-09-18T12:57:17Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation [60.93091603232817]
改良されたガウス過程上信頼境界(GP-UCB)取得関数を開発した。
これは、分布から探索・探索トレードオフパラメータをサンプリングすることによって行われる。
これにより、期待されるトレードオフパラメータが、関数のベイズ的後悔に縛られることなく、問題によりよく適合するように変更できることが証明される。
論文 参考訳(メタデータ) (2020-06-08T00:28:41Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
目的関数の最大点(あるいは値)の信頼領域を構築することにより、ベイズ最適化アルゴリズムの出力不確実性を評価する新しい手法を提案する。
我々の理論は、既存のシーケンシャルサンプリングポリシーと停止基準に対する統一的な不確実性定量化フレームワークを提供する。
論文 参考訳(メタデータ) (2020-02-04T22:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。