Localized LoRA: A Structured Low-Rank Approximation for Efficient Fine-Tuning
- URL: http://arxiv.org/abs/2506.00236v1
- Date: Fri, 30 May 2025 21:13:23 GMT
- Title: Localized LoRA: A Structured Low-Rank Approximation for Efficient Fine-Tuning
- Authors: Babak Barazandeh,
- Abstract summary: Localized LoRA is a framework that models weight updates as a composition of low-rank approximations applied to structured blocks of the weight matrix.<n>We show that our method consistently achieves lower approximation error under matched parameter budgets.
- Score: 2.0652244993845086
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, offer compact and effective alternatives to full model fine-tuning by introducing low-rank updates to pretrained weights. However, most existing approaches rely on global low-rank structures, which can overlook spatial patterns spread across the parameter space. In this work, we propose Localized LoRA, a generalized framework that models weight updates as a composition of low-rank matrices applied to structured blocks of the weight matrix. This formulation enables dense, localized updates throughout the parameter space-without increasing the total number of trainable parameters. We provide a formal comparison between global, diagonal-local, and fully localized low-rank approximations, and show that our method consistently achieves lower approximation error under matched parameter budgets. Experiments on both synthetic and practical settings demonstrate that Localized LoRA offers a more expressive and adaptable alternative to existing methods, enabling efficient fine-tuning with improved performance.
Related papers
- LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning [5.980897761790243]
We introduce LoFT, a novel low-rank adaptation method that behaves like full fine-tuning.<n>LoFT aligns the model's internal dynamics with those of updating all model weights.<n> Empirically, this approach substantially narrows the performance gap between adapter-based tuning and full fine-tuning.
arXiv Detail & Related papers (2025-05-27T14:54:24Z) - DenseLoRA: Dense Low-Rank Adaptation of Large Language Models [14.133511131962786]
Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs)<n>We introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA.<n>We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B.
arXiv Detail & Related papers (2025-05-27T08:19:07Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaptation over a Flat Loss Landscape [52.98187034726091]
We introduce Flat-LoRA, which aims to identify a low-rank adaptation situated in a flat region of the full parameter space.<n>We show that Flat-LoRA improves both in-domain and out-of-domain generalization.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.<n>Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.<n>We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Flora: Low-Rank Adapters Are Secretly Gradient Compressors [30.224822087562163]
Low-rank adaptation (LoRA) is proposed to reduce the optimization states by training fewer parameters.
LoRA restricts overall weight update matrices to be low-rank, limiting the model performance.
We propose Flora, which is able to achieve high-rank updates by resampling the projection matrices.
arXiv Detail & Related papers (2024-02-05T18:50:39Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.