DenseLoRA: Dense Low-Rank Adaptation of Large Language Models
- URL: http://arxiv.org/abs/2505.23808v1
- Date: Tue, 27 May 2025 08:19:07 GMT
- Title: DenseLoRA: Dense Low-Rank Adaptation of Large Language Models
- Authors: Lin Mu, Xiaoyu Wang, Li Ni, Yang Li, Zhize Wu, Peiquan Jin, Yiwen Zhang,
- Abstract summary: Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs)<n>We introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA.<n>We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B.
- Score: 14.133511131962786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs) by fine-tuning two low-rank matrices, thereby reducing the number of trainable parameters. However, prior research indicates that many of the weights in these matrices are redundant, leading to inefficiencies in parameter utilization. To address this limitation, we introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA. DenseLoRA builds upon the concept of representation fine-tuning, incorporating a single Encoder-Decoder to refine and compress hidden representations across all adaptation layers before applying adaptation. Instead of relying on two redundant low-rank matrices as in LoRA, DenseLoRA adapts LLMs through a dense low-rank matrix, improving parameter utilization and adaptation efficiency. We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B. Additionally, we conduct extensive experiments to systematically assess the impact of DenseLoRA's components on overall model performance. Code is available at https://github.com/mulin-ahu/DenseLoRA.
Related papers
- Uni-LoRA: One Vector is All You Need [13.938834666101679]
Low-Rank Adaptation (LoRA) has become the de facto parameter-efficient fine-tuning (PEFT) method for large language models.<n>In this paper, we show that the parameter space reduction strategies employed by these LoRA variants can be formulated within a unified framework.<n>Under the unified view of Uni-LoRA, this design requires only a single trainable vector to reconstruct LoRA parameters for the entire LLM.
arXiv Detail & Related papers (2025-06-01T03:00:09Z) - TLoRA: Tri-Matrix Low-Rank Adaptation of Large Language Models [0.135975510645475]
TLoRA is a novel tri-matrix low-rank adaptation method.<n>We show that TLoRA achieves comparable performance to existing low-rank methods.
arXiv Detail & Related papers (2025-04-25T23:11:10Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.<n>We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) is a novel PEFT method that decomposes pre-trained weights into magnitude and directional components.<n>EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA.
arXiv Detail & Related papers (2025-01-21T11:42:09Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - LoRA$^2$ : Multi-Scale Low-Rank Approximations for Fine-Tuning Large Language Models [3.7049613588433497]
Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning.
We extend the LoRA to multiple scales, dubbed as LoRA$2$.
arXiv Detail & Related papers (2024-08-13T12:31:30Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.<n>Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.<n>We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional.<n>We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank.<n>Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks.
arXiv Detail & Related papers (2024-02-27T07:14:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.