Whispers of Many Shores: Cultural Alignment through Collaborative Cultural Expertise
- URL: http://arxiv.org/abs/2506.00242v1
- Date: Fri, 30 May 2025 21:16:25 GMT
- Title: Whispers of Many Shores: Cultural Alignment through Collaborative Cultural Expertise
- Authors: Shuai Feng, Wei-Chuang Chan, Srishti Chouhan, Junior Francisco Garcia Ayala, Srujananjali Medicherla, Kyle Clark, Mingwei Shi,
- Abstract summary: Current large language models (LLMs) often lack the nuanced understanding required for diverse cultural contexts.<n>We introduce a novel soft prompt fine-tuning framework that enables efficient and modular cultural alignment.
- Score: 0.4711628883579317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of large language models (LLMs) into global applications necessitates effective cultural alignment for meaningful and culturally-sensitive interactions. Current LLMs often lack the nuanced understanding required for diverse cultural contexts, and adapting them typically involves costly full fine-tuning. To address this, we introduce a novel soft prompt fine-tuning framework that enables efficient and modular cultural alignment. Our method utilizes vectorized prompt tuning to dynamically route queries to a committee of culturally specialized 'expert' LLM configurations, created by optimizing soft prompt embeddings without altering the base model's parameters. Extensive experiments demonstrate that our framework significantly enhances cultural sensitivity and adaptability, improving alignment scores from 0.208 to 0.820, offering a robust solution for culturally-aware LLM deployment. This research paves the way for subsequent investigations into enhanced cultural coverage and dynamic expert adaptation, crucial for realizing autonomous AI with deeply nuanced understanding in a globally interconnected world.
Related papers
- From Word to World: Evaluate and Mitigate Culture Bias via Word Association Test [48.623761108859085]
We extend the human-centered word association test (WAT) to assess the alignment of large language models with cross-cultural cognition.<n>To mitigate the culture preference, we propose CultureSteer, an innovative approach that integrates a culture-aware steering mechanism.
arXiv Detail & Related papers (2025-05-24T07:05:10Z) - From Surveys to Narratives: Rethinking Cultural Value Adaptation in LLMs [57.43233760384488]
Adapting cultural values in Large Language Models (LLMs) presents significant challenges.<n>Prior work primarily aligns LLMs with different cultural values using World Values Survey (WVS) data.<n>In this paper, we investigate WVS-based training for cultural value adaptation and find that relying solely on survey data cane cultural norms and interfere with factual knowledge.
arXiv Detail & Related papers (2025-05-22T09:00:01Z) - CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
Large Language Models (LLMs) more deeply integrate into human life across various regions.<n>Existing approaches develop culturally aligned LLMs through fine-tuning with culture-specific corpora.<n>We introduce CAReDiO, a novel cultural data construction framework.
arXiv Detail & Related papers (2025-04-09T13:40:13Z) - Cultural Learning-Based Culture Adaptation of Language Models [70.1063219524999]
Adapting large language models (LLMs) to diverse cultural values is a challenging task.<n>We present CLCA, a novel framework for enhancing LLM alignment with cultural values based on cultural learning.
arXiv Detail & Related papers (2025-04-03T18:16:26Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
Vision-language models (VLMs) have advanced human-AI interaction but struggle with cultural understanding.<n>CultureVerse is a large-scale multimodal benchmark covering 19, 682 cultural concepts, 188 countries/regions, 15 cultural concepts, and 3 question types.<n>We propose CultureVLM, a series of VLMs fine-tuned on our dataset to achieve significant performance improvement in cultural understanding.
arXiv Detail & Related papers (2025-01-02T14:42:37Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMs are increasingly deployed in global applications, ensuring users from diverse backgrounds feel respected and understood.<n>Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values.<n>We present two key contributions: A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and a culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators.
arXiv Detail & Related papers (2024-10-15T18:13:10Z) - Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
We define the task of cultural adaptation and create an evaluation framework to evaluate the performance of modern LLMs.
We analyze possible issues with automatic adaptation.
We hope that this paper will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios.
arXiv Detail & Related papers (2024-06-20T17:06:58Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
We introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build challenging evaluation dataset.
Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions.
CULTURALBENCH-V0.1 is a compact yet high-quality evaluation dataset with users' red-teaming attempts.
arXiv Detail & Related papers (2024-04-10T00:25:09Z) - Benchmarking Machine Translation with Cultural Awareness [50.183458829028226]
Translating culture-related content is vital for effective cross-cultural communication.
Many culture-specific items (CSIs) often lack viable translations across languages.
This difficulty hinders the analysis of cultural awareness of machine translation systems.
arXiv Detail & Related papers (2023-05-23T17:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.