Adversarial Threat Vectors and Risk Mitigation for Retrieval-Augmented Generation Systems
- URL: http://arxiv.org/abs/2506.00281v1
- Date: Fri, 30 May 2025 22:22:05 GMT
- Title: Adversarial Threat Vectors and Risk Mitigation for Retrieval-Augmented Generation Systems
- Authors: Chris M. Ward, Josh Harguess,
- Abstract summary: Retrieval-Augmented Generation (RAG) systems integrate Large Language Models (LLMs) with external knowledge sources.<n>This paper examines the importance of RAG systems through recent industry adoption trends and identifies the prominent attack vectors for RAG: prompt injection, data poisoning, and adversarial query manipulation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems, which integrate Large Language Models (LLMs) with external knowledge sources, are vulnerable to a range of adversarial attack vectors. This paper examines the importance of RAG systems through recent industry adoption trends and identifies the prominent attack vectors for RAG: prompt injection, data poisoning, and adversarial query manipulation. We analyze these threats under risk management lens, and propose robust prioritized control list that includes risk-mitigating actions like input validation, adversarial training, and real-time monitoring.
Related papers
- The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - Chain-of-Thought Poisoning Attacks against R1-based Retrieval-Augmented Generation Systems [39.05753852489526]
Existing adversarial attack methods typically exploit knowledge base poisoning to probe the vulnerabilities of RAG systems.<n>This paper uses reasoning process templates from R1-based RAG systems to wrap erroneous knowledge into adversarial documents, and injects them into the knowledge base to attack RAG systems.<n>The key idea of our approach is that adversarial documents, by simulating the chain-of-thought patterns aligned with the model's training signals, may be misinterpreted by the model as authentic historical reasoning processes.
arXiv Detail & Related papers (2025-05-22T08:22:46Z) - ControlNET: A Firewall for RAG-based LLM System [9.362574883495927]
Retrieval-Augmented Generation (RAG) has significantly enhanced the factual accuracy and domain adaptability of Large Language Models (LLMs)<n>RAG mitigates hallucinations by integrating external knowledge, yet introduces privacy risk and security risk, notably data breaching risk and data poisoning risk.<n>In this paper, we propose an AI firewall, ControlNET, designed to safeguard RAG-based LLM systems from these vulnerabilities.
arXiv Detail & Related papers (2025-04-13T14:18:35Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)<n>In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - Robust Intrusion Detection System with Explainable Artificial Intelligence [0.0]
Adversarial input can exploit machine learning (ML) models through standard interfaces.<n> Conventional defenses such as adversarial training are costly in computational terms and often fail to provide real-time detection.<n>We suggest a novel strategy for detecting and mitigating adversarial attacks using eXplainable Artificial Intelligence (XAI)
arXiv Detail & Related papers (2025-03-07T10:31:59Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Multimodal large language models (MLLMs) equipped with Retrieval Augmented Generation (RAG)<n>RAG enhances MLLMs by grounding responses in query-relevant external knowledge.<n>This reliance poses a critical yet underexplored safety risk: knowledge poisoning attacks.<n>We propose MM-PoisonRAG, a novel knowledge poisoning attack framework with two attack strategies.
arXiv Detail & Related papers (2025-02-25T04:23:59Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)<n>RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.<n>Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) systems have emerged as a promising solution to mitigate hallucinations.<n>RAG systems are vulnerable to adversarial poisoning attacks, where malicious passages injected into retrieval databases can mislead the model into generating factually incorrect outputs.<n>This paper investigates both the retrieval and the generation components of RAG systems to understand how to enhance their robustness against such attacks.
arXiv Detail & Related papers (2024-12-21T17:31:52Z) - HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
We reveal a novel vulnerability, the retrieval prompt hijack attack (HijackRAG)
HijackRAG enables attackers to manipulate the retrieval mechanisms of RAG systems by injecting malicious texts into the knowledge database.
We propose both black-box and white-box attack strategies tailored to different levels of the attacker's knowledge.
arXiv Detail & Related papers (2024-10-30T09:15:51Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
This work proposes to defend ASV systems against adversarial attacks with a separate detection network.
A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples.
arXiv Detail & Related papers (2020-06-11T04:31:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.