論文の概要: Exploring the Performance of Perforated Backpropagation through Further Experiments
- arxiv url: http://arxiv.org/abs/2506.00356v1
- Date: Sat, 31 May 2025 02:52:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.797573
- Title: Exploring the Performance of Perforated Backpropagation through Further Experiments
- Title(参考訳): 追加実験による穴あけバックプロパゲーションの性能調査
- Authors: Rorry Brenner, Evan Davis, Rushi Chaudhari, Rowan Morse, Jingyao Chen, Xirui Liu, Zhaoyi You, Laurent Itti,
- Abstract要約: ピッツバーグの学生と地元のML実践者が集まって、Perforated Backproagationアルゴリズムを試した。
結果、システムはプロジェクトを強化でき、90%のモデル圧縮が精度に悪影響を及ぼすことなく、または16%まで元のモデルの精度を向上できることがわかった。
- 参考スコア(独自算出の注目度): 6.767490181945525
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Perforated Backpropagation is a neural network optimization technique based on modern understanding of the computational importance of dendrites within biological neurons. This paper explores further experiments from the original publication, generated from a hackathon held at the Carnegie Mellon Swartz Center in February 2025. Students and local Pittsburgh ML practitioners were brought together to experiment with the Perforated Backpropagation algorithm on the datasets and models which they were using for their projects. Results showed that the system could enhance their projects, with up to 90% model compression without negative impact on accuracy, or up to 16% increased accuracy of their original models.
- Abstract(参考訳): Perforated Backpropagationは、生物学的ニューロンにおけるデンドライトの計算重要性の現代的な理解に基づくニューラルネットワーク最適化技術である。
本稿では,2025年2月にカーネギーメロン・シュワルツ・センターで開催されたハッカソンから生成された,オリジナルの出版物によるさらなる実験について述べる。
学生とピッツバーグのML実践者たちは、自分たちのプロジェクトで使用しているデータセットとモデルについて、Perforated Backproagationアルゴリズムを試すために集まった。
結果、システムはプロジェクトを強化でき、90%のモデル圧縮が精度に悪影響を及ぼすことなく、または16%まで元のモデルの精度を向上できることがわかった。
関連論文リスト
- Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy [0.9999629695552196]
本研究は、ストロークを予測するように設計されたデータ駆動型、解釈可能な機械学習フレームワークを開発し、検証する。
定期的に収集された人口統計、生活習慣、臨床変数は4,981件の公的なコホートから得られた。
提案したモデルでは精度97.2%、F1スコア97.15%が達成され、先行する個人モデルと比較して大幅に向上した。
論文 参考訳(メタデータ) (2025-05-18T21:46:45Z) - Knowledge Distillation: Enhancing Neural Network Compression with Integrated Gradients [0.0]
本稿では,知識蒸留(KD)と統合勾配(IG)を併用した機械学習フレームワークを提案する。
本稿では,教師モデルから事前計算されたIGマップを訓練画像上にオーバーレイして,コンパクトな学生モデルを重要な特徴表現へ導く,新たなデータ拡張戦略を提案する。
CIFAR-10の実験は,本手法の有効性を実証している: MobileNet-V2 教師の4.1倍圧縮した学生モデルでは,標準の 91.4% と従来の KD アプローチを上回り,分類精度92.5% を達成し,推論遅延を 140 ms から 13 ms-a 10fold に低減した。
論文 参考訳(メタデータ) (2025-03-17T10:07:50Z) - Mechanics and Design of Metastructured Auxetic Patches with Bio-inspired Materials [0.5033155053523042]
本研究は, 絹フィブロインから作製した正弦波状構造を有する触覚パッチのニューラルネットワークによる計算モデルに焦点をあてる。
提案する枠組みは, 医療用バイオインスパイアされた生体組織の設計において, 重要な進歩を示すものである。
論文 参考訳(メタデータ) (2025-01-08T03:57:20Z) - Advancing the Biological Plausibility and Efficacy of Hebbian Convolutional Neural Networks [0.0]
本稿では,画像処理のための畳み込みニューラルネットワーク(CNN)へのヘビアン学習の統合について述べる。
ヘビアン学習は、局所的な教師なしの神経情報に基づいて特徴表現を形成する。
その結果, より複雑で受容的な領域を通じて, まばらな階層的学習の徴候がみられた。
論文 参考訳(メタデータ) (2025-01-06T12:29:37Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
視覚プロンプティングは、コンピュータビジョンにおける伝達学習の重要な方法として登場した。
モデル圧縮は視覚的プロンプトベース転送の性能に有害である。
しかし、量子化によってモデルが圧縮されるとき、キャリブレーションに対する負の効果は存在しない。
論文 参考訳(メタデータ) (2023-08-29T01:47:49Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
Inference [59.040209568168436]
まず、ニューラルネットワークを用いてベイズ後部への高速な提案を行い、その基礎となる可能性と事前に基づいて重み付けを行う。
本発明は,(1)ネットワーク不正確性のない修正後部,(2)提案案の評価と故障事例の同定のための性能診断(サンプル効率),(3)ベイズ証拠の偏りのない推定を提供する。
LIGOとVirgoで観測された42個のブラックホールをSEOBNRv4PHMとIMRPhenomHMXP波形モデルで解析した。
論文 参考訳(メタデータ) (2022-10-11T18:00:02Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
画像データに対するエラーカーネル駆動型アクティベーションアライメントアルゴリズムを提案する。
EKDAAは、ローカルに派生したエラー送信カーネルとエラーマップを導入することで達成される。
結果は、識別不能なアクティベーション機能を利用するEKDAAトレーニングCNNに対して提示される。
論文 参考訳(メタデータ) (2022-06-03T21:14:10Z) - Semi-supervised teacher-student deep neural network for materials
discovery [6.333015476935593]
本稿では,高速な生成エネルギーと合成可能性予測のための半教師付き深層ニューラルネットワーク(TSDNN)モデルを提案する。
生成エネルギーに基づく安定性スクリーニングでは,ベースラインCGCNN回帰モデルと比較して絶対精度が10.3%向上する。
合成可能性予測では,1/49モデルパラメータを用いて,ベースラインPU学習の正の確率を87.9%から97.9%に有意に向上させた。
論文 参考訳(メタデータ) (2021-12-12T04:00:21Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。