Neural Network-based Information-Theoretic Transceivers for High-Order Modulation Schemes
- URL: http://arxiv.org/abs/2506.00368v1
- Date: Sat, 31 May 2025 03:22:26 GMT
- Title: Neural Network-based Information-Theoretic Transceivers for High-Order Modulation Schemes
- Authors: Ngoc Long Pham, Tri Nhu Do,
- Abstract summary: Neural network (NN)-based end-to-end (E2E) communication systems have been investigated as potential tools for developing artificial intelligence (Al)-native E2E systems.<n>We propose an NN-based bitwise receiver that improves computational efficiency while maintaining performance comparable to baseline demappers.<n>We introduce a novel symbol-wise autoencoder (AE)-based E2E system that jointly optimize the transmitter and receiver at the physical layer.
- Score: 2.295863158976069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network (NN)-based end-to-end (E2E) communication systems, in which each system component may consist of a portion of a neural network, have been investigated as potential tools for developing artificial intelligence (Al)-native E2E systems. In this paper, we propose an NN-based bitwise receiver that improves computational efficiency while maintaining performance comparable to baseline demappers. Building on this foundation, we introduce a novel symbol-wise autoencoder (AE)-based E2E system that jointly optimizes the transmitter and receiver at the physical layer. We evaluate the proposed NN-based receiver using bit-error rate (BER) analysis to confirm that the numerical BER achieved by NN-based receivers or transceivers is accurate. Results demonstrate that the AE-based system outperforms baseline architectures, particularly for higher-order modulation schemes. We further show that the training signal-to-noise ratio (SNR) significantly affects the performance of the systems when inference is conducted at different SNR levels.
Related papers
- Novel Deep Neural OFDM Receiver Architectures for LLR Estimation [1.2499537119440243]
We propose two novel neural network based OFDM receivers performing channel estimation and equalization tasks.<n>The simulation results show that DAT and RDNLA outperform both traditional communication systems and existing neural receiver models.
arXiv Detail & Related papers (2025-03-26T12:39:56Z) - A CNN-based End-to-End Learning for RIS-assisted Communication System [10.177301687464238]
We propose a novel CNN-based autoencoder to jointly optimize the transmitter, the receiver, and the RIS of a RIS-assisted communication system.<n> Numerically we have shown that the bit error rate (BER) performance of the CNN-based autoencoder system is better than the theoretical BER performance of the RIS-assisted communication systems.
arXiv Detail & Related papers (2025-03-18T07:24:55Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - SICNN: Soft Interference Cancellation Inspired Neural Network Equalizers [1.6451639748812472]
We propose a novel neural network (NN)-based approach, referred to as SICNN.
SICNN is designed by deep unfolding a model-based iterative soft interference cancellation (SIC) method.
We compare the bit error ratio performance of the proposed NN-based equalizers with state-of-the-art model-based and NN-based approaches.
arXiv Detail & Related papers (2023-08-24T06:40:54Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and
Energy Extraction of Nuclear Detector Signals [3.307097167756987]
We introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning.
The proposed system achieved 60 ps time resolution and 0.40% energy resolution with online neural network inference at signal to noise ratio (SNR) of 47.4 dB.
arXiv Detail & Related papers (2022-09-02T08:52:21Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.