JojoSCL: Shrinkage Contrastive Learning for single-cell RNA sequence Clustering
- URL: http://arxiv.org/abs/2506.00410v1
- Date: Sat, 31 May 2025 05:59:56 GMT
- Title: JojoSCL: Shrinkage Contrastive Learning for single-cell RNA sequence Clustering
- Authors: Ziwen Wang,
- Abstract summary: Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling gene expression analysis at the individual cell level.<n>However, the high dimensionality and sparsity of scRNA-seq data continue to challenge existing clustering models.<n>We introduce JojoSCL, a novel self-supervised contrastive learning framework for scRNA-seq clustering.
- Score: 0.44116499009420784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling gene expression analysis at the individual cell level. Clustering allows for the identification of cell types and the further discovery of intrinsic patterns in single-cell data. However, the high dimensionality and sparsity of scRNA-seq data continue to challenge existing clustering models. In this paper, we introduce JojoSCL, a novel self-supervised contrastive learning framework for scRNA-seq clustering. By incorporating a shrinkage estimator based on hierarchical Bayesian estimation, which adjusts gene expression estimates towards more reliable cluster centroids to reduce intra-cluster dispersion, and optimized using Stein's Unbiased Risk Estimate (SURE), JojoSCL refines both instance-level and cluster-level contrastive learning. Experiments on ten scRNA-seq datasets substantiate that JojoSCL consistently outperforms prevalent clustering methods, with further validation of its practicality through robustness analysis and ablation studies. JojoSCL's code is available at: https://github.com/ziwenwang28/JojoSCL.
Related papers
- Soft Graph Clustering for single-cell RNA Sequencing Data [15.648907695773701]
We introduce scSGC, a Soft Graph Clustering for single-cell RNA sequencing data.<n> scSGC aims to more accurately characterize continuous similarities among cells through non-binary edge weights.<n>It outperforms 13 state-of-the-art clustering models in clustering accuracy, cell type annotation, and computational efficiency.
arXiv Detail & Related papers (2025-07-14T03:49:12Z) - Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs)<n>Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n2), followed by spectral clustering.<n>We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering.
arXiv Detail & Related papers (2025-06-12T16:43:09Z) - scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data [27.903476609960062]
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity.<n>Cell clustering plays a key role in identifying cell types and marker genes.<n>Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance.<n>We propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data.
arXiv Detail & Related papers (2025-05-19T02:17:09Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data [5.234149080137045]
High sparsity and complex noise patterns inherent in scRNA-seq data present significant challenges for traditional clustering methods.
We propose a deep clustering method, Attention-Enhanced Structural Deep Embedding Graph Clustering (scASDC)
scASDC integrates multiple advanced modules to improve clustering accuracy and robustness.
arXiv Detail & Related papers (2024-08-09T09:10:36Z) - scRNA-seq Data Clustering by Cluster-aware Iterative Contrastive
Learning [29.199004624757233]
Single-cell RNA sequencing (scRNA-seq) enables researchers to analyze gene expression at single-cell level.
One important task in scRNA-seq data analysis is unsupervised clustering.
We propose Cluster-aware Iterative Contrastive Learning (CICL) for scRNA-seq data clustering.
arXiv Detail & Related papers (2023-12-27T14:50:59Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
We introduce scUNC, an innovative multi-view clustering approach tailored for single-cell data.
scUNC seamlessly integrates information from different views without the need for a predefined number of clusters.
We conducted a comprehensive evaluation of scUNC using three distinct single-cell datasets.
arXiv Detail & Related papers (2023-11-28T08:34:58Z) - Confident Clustering via PCA Compression Ratio and Its Application to
Single-cell RNA-seq Analysis [4.511561231517167]
We develop a confident clustering method to diminish the influence of boundary datapoints.
We validate our algorithm on single-cell RNA-seq data.
Unlike traditional clustering methods in single-cell analysis, the confident clustering shows high stability under different choices of parameters.
arXiv Detail & Related papers (2022-05-19T20:46:49Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z) - Progressive Cluster Purification for Unsupervised Feature Learning [48.87365358296371]
In unsupervised feature learning, sample specificity based methods ignore the inter-class information.
We propose a novel clustering based method, which excludes class inconsistent samples during progressive cluster formation.
Our approach, referred to as Progressive Cluster Purification (PCP), implements progressive clustering by gradually reducing the number of clusters during training.
arXiv Detail & Related papers (2020-07-06T08:11:03Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - Review of Single-cell RNA-seq Data Clustering for Cell Type
Identification and Characterization [12.655970720359297]
Unsupervised learning has become the central component to identify and characterize novel cell types and gene expression patterns.
We review the existing single-cell RNA-seq data clustering methods with critical insights into the related advantages and limitations.
We conduct performance comparison experiments to evaluate several popular single-cell RNA-seq clustering approaches on two single-cell transcriptomic datasets.
arXiv Detail & Related papers (2020-01-03T22:48:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.