Attention-Aided MMSE for OFDM Channel Estimation: Learning Linear Filters with Attention
- URL: http://arxiv.org/abs/2506.00452v1
- Date: Sat, 31 May 2025 08:12:04 GMT
- Title: Attention-Aided MMSE for OFDM Channel Estimation: Learning Linear Filters with Attention
- Authors: TaeJun Ha, Chaehyun Jung, Hyeonuk Kim, Jeongwoo Park, Jeonghun Park,
- Abstract summary: We propose an Attention-aided MMSE that learns the optimal MMSE filter via the Attention Transformer.<n>The A-MMSE estimates the channel through a single linear operation for channel estimation, eliminating nonlinear activations during inference.<n>A rank-adaptive extension of the proposed A-MMSE allows flexible trade-offs between complexity and channel estimation accuracy.
- Score: 9.919010430380476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In orthogonal frequency division multiplexing (OFDM), accurate channel estimation is crucial. Classical signal processing based approaches, such as minimum mean-squared error (MMSE) estimation, often require second-order statistics that are difficult to obtain in practice. Recent deep neural networks based methods have been introduced to address this; yet they often suffer from high complexity. This paper proposes an Attention-aided MMSE (A-MMSE), a novel model-based DNN framework that learns the optimal MMSE filter via the Attention Transformer. Once trained, the A-MMSE estimates the channel through a single linear operation for channel estimation, eliminating nonlinear activations during inference and thus reducing computational complexity. To enhance the learning efficiency of the A-MMSE, we develop a two-stage Attention encoder, designed to effectively capture the channel correlation structure. Additionally, a rank-adaptive extension of the proposed A-MMSE allows flexible trade-offs between complexity and channel estimation accuracy. Extensive simulations with 3GPP TDL channel models demonstrate that the proposed A-MMSE consistently outperforms other baseline methods in terms of normalized MSE across a wide range of SNR conditions. In particular, the A-MMSE and its rank-adaptive extension establish a new frontier in the performance complexity trade-off, redefining the standard for practical channel estimation methods.
Related papers
- Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFS and OFDM waveforms enjoy the benefits of the reuse of legacy architectures, simplicity of receiver design, and low-complexity detection.
We propose a deep neural network (DNN)-based adaptation scheme to switch between using either an OTFS or OFDM signal processing chain at the transmitter and receiver for optimal mean-squared-error (MSE) performance.
arXiv Detail & Related papers (2023-09-04T02:33:44Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Channel Estimation via Successive Denoising in MIMO OFDM Systems: A Reinforcement Learning Approach [23.57305243608369]
We present a frequency-domain denoising method based on a reinforcement learning framework.
Our algorithm provides a significant improvement over the practical least squares (LS) estimation method.
arXiv Detail & Related papers (2021-01-25T18:33:54Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
We propose an ML-enhanced MU-MIMO receiver that builds on top of a conventional linear minimum mean squared error (LMMSE) architecture.
CNNs are used to compute an approximation of the second-order statistics of the channel estimation error.
A CNN-based demapper jointly processes a large number of frequency-division multiplexing symbols and subcarriers.
arXiv Detail & Related papers (2020-12-15T09:55:37Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.