SST: Self-training with Self-adaptive Thresholding for Semi-supervised Learning
- URL: http://arxiv.org/abs/2506.00467v1
- Date: Sat, 31 May 2025 08:34:04 GMT
- Title: SST: Self-training with Self-adaptive Thresholding for Semi-supervised Learning
- Authors: Shuai Zhao, Heyan Huang, Xinge Li, Xiaokang Chen, Rui Wang,
- Abstract summary: Self-adaptive Thresholding (SST) is a novel, effective, and efficient SSL framework.<n>SST adjusts class-specific thresholds based on the model's learning progress.<n>Semi-SST-ViT-Huge achieves the best results on competitive ImageNet-1K SSL benchmarks.
- Score: 42.764994681999774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have demonstrated exceptional performance in supervised learning, benefiting from abundant high-quality annotated data. However, obtaining such data in real-world scenarios is costly and labor-intensive. Semi-supervised learning (SSL) offers a solution to this problem. Recent studies, such as Semi-ViT and Noisy Student, which employ consistency regularization or pseudo-labeling, have demonstrated significant achievements. However, they still face challenges, particularly in accurately selecting sufficient high-quality pseudo-labels due to their reliance on fixed thresholds. Recent methods such as FlexMatch and FreeMatch have introduced flexible or self-adaptive thresholding techniques, greatly advancing SSL research. Nonetheless, their process of updating thresholds at each iteration is deemed time-consuming, computationally intensive, and potentially unnecessary. To address these issues, we propose Self-training with Self-adaptive Thresholding (SST), a novel, effective, and efficient SSL framework. SST introduces an innovative Self-Adaptive Thresholding (SAT) mechanism that adaptively adjusts class-specific thresholds based on the model's learning progress. SAT ensures the selection of high-quality pseudo-labeled data, mitigating the risks of inaccurate pseudo-labels and confirmation bias. Extensive experiments demonstrate that SST achieves state-of-the-art performance with remarkable efficiency, generalization, and scalability across various architectures and datasets. Semi-SST-ViT-Huge achieves the best results on competitive ImageNet-1K SSL benchmarks, with 80.7% / 84.9% Top-1 accuracy using only 1% / 10% labeled data. Compared to the fully-supervised DeiT-III-ViT-Huge, which achieves 84.8% Top-1 accuracy using 100% labeled data, our method demonstrates superior performance using only 10% labeled data.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning [46.95063831057502]
We propose emphFreeMatch to define and adjust the confidence threshold in a self-adaptive manner according to the model's learning status.
FreeMatch achieves textbf5.78%, textbf13.59%, and textbf1.28% error rate reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class.
arXiv Detail & Related papers (2022-05-15T10:07:52Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
We propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL) to improve pseudo-label quality and enhance the model's robustness in the real-world setting.
Our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10.
arXiv Detail & Related papers (2022-03-04T12:18:23Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
We propose a deep-learning based weakly supervised framework for semantic segmentation of ALS point clouds.
We exploit potential information from unlabeled data subject to incomplete and sparse labels.
Our method achieves an overall accuracy of 83.0% and an average F1 score of 70.0%, which have increased by 6.9% and 12.8% respectively.
arXiv Detail & Related papers (2021-10-04T14:00:23Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.