Prompt-Tuned LLM-Augmented DRL for Dynamic O-RAN Network Slicing
- URL: http://arxiv.org/abs/2506.00574v1
- Date: Sat, 31 May 2025 14:12:56 GMT
- Title: Prompt-Tuned LLM-Augmented DRL for Dynamic O-RAN Network Slicing
- Authors: Fatemeh Lotfi, Hossein Rajoli, Fatemeh Afghah,
- Abstract summary: Large Language Models (LLMs) structure unorganized network feedback into meaningful latent representations.<n>In O-RAN slicing, concepts like SNR, power levels and throughput are semantically related.<n>We introduce a contextualization-based adaptation method that integrates learnable prompts into an LLM-augmented DRL framework.
- Score: 5.62872273155603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern wireless networks must adapt to dynamic conditions while efficiently managing diverse service demands. Traditional deep reinforcement learning (DRL) struggles in these environments, as scattered and evolving feedback makes optimal decision-making challenging. Large Language Models (LLMs) offer a solution by structuring unorganized network feedback into meaningful latent representations, helping RL agents recognize patterns more effectively. For example, in O-RAN slicing, concepts like SNR, power levels and throughput are semantically related, and LLMs can naturally cluster them, providing a more interpretable state representation. To leverage this capability, we introduce a contextualization-based adaptation method that integrates learnable prompts into an LLM-augmented DRL framework. Instead of relying on full model fine-tuning, we refine state representations through task-specific prompts that dynamically adjust to network conditions. Utilizing ORANSight, an LLM trained on O-RAN knowledge, we develop Prompt-Augmented Multi agent RL (PA-MRL) framework. Learnable prompts optimize both semantic clustering and RL objectives, allowing RL agents to achieve higher rewards in fewer iterations and adapt more efficiently. By incorporating prompt-augmented learning, our approach enables faster, more scalable, and adaptive resource allocation in O-RAN slicing. Experimental results show that it accelerates convergence and outperforms other baselines.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Online Training and Pruning of Deep Reinforcement Learning Networks [0.0]
Scaling deep neural networks (NN) of reinforcement learning (RL) algorithms has been shown to enhance performance when feature extraction networks are used.<n>We propose an approach to integrate simultaneous training and pruning within advanced RL methods.
arXiv Detail & Related papers (2025-07-16T07:17:41Z) - ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented Reinforcement Learning in O-RAN Network Slicing [5.62872273155603]
We propose textitORAN-GUIDE, a dual-LLM framework that enhances multi-agent (MARL) with task-relevant, semantically enriched state representations.<n>Results show that ORAN-GUIDE improves sample efficiency, policy convergence, and performance generalization over standard MARL and single-LLM baselines.
arXiv Detail & Related papers (2025-05-31T14:21:19Z) - ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning [68.76048244253582]
We introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in video understanding.<n>ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error.<n>ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks.
arXiv Detail & Related papers (2025-05-21T12:29:40Z) - LAMeTA: Intent-Aware Agentic Network Optimization via a Large AI Model-Empowered Two-Stage Approach [68.198383438396]
We present LAMeTA, a Large AI Model (LAM)-empowered Two-stage Approach for intent-aware agentic network optimization.<n>First, we propose Intent-oriented Knowledge Distillation (IoKD), which efficiently distills intent-understanding capabilities.<n>Second, we develop Symbiotic Reinforcement Learning (SRL), integrating E-LAMs with a policy-based DRL framework.
arXiv Detail & Related papers (2025-05-18T05:59:16Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - AdaRefiner: Refining Decisions of Language Models with Adaptive Feedback [37.22370177877156]
Large Language Models (LLMs) have demonstrated significant success across various domains.
Their application in complex decision-making tasks frequently necessitates intricate prompt engineering or fine-tuning.
We introduce AdaRefiner, a novel framework designed to enhance the synergy between LLMs and RL feedback.
Our work makes contributions to the automatic self-refinement of LLMs with RL feedback, offering a more adaptable and efficient solution for complex decision-making problems.
arXiv Detail & Related papers (2023-09-29T12:16:19Z) - FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters [0.0]
This paper introduces a new framework for benchmarking the performance of an RL agent in network environments simulated with ns-3.
Within this framework, we demonstrate that an RL agent without domain-specific knowledge can learn how to efficiently adjust Radio Access Network (RAN) parameters to match offline optimization in static scenarios.
arXiv Detail & Related papers (2022-09-08T12:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.