Event-based multi-view photogrammetry for high-dynamic, high-velocity target measurement
- URL: http://arxiv.org/abs/2506.00578v1
- Date: Sat, 31 May 2025 14:23:39 GMT
- Title: Event-based multi-view photogrammetry for high-dynamic, high-velocity target measurement
- Authors: Taihang Lei, Banglei Guan, Minzu Liang, Xiangyu Li, Jianbing Liu, Jing Tao, Yang Shang, Qifeng Yu,
- Abstract summary: Existing measurement methods face challenges such as limited dynamic range, discontinuous observations, and high costs.<n>This paper presents a new approach leveraging an event-based multi-view photometric system.<n>In a light gas gun fragment test, the proposed method showed a measurement deviation of 4.47% compared to the electromagnetic speedometer.
- Score: 9.651861391083703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The characterization of mechanical properties for high-dynamic, high-velocity target motion is essential in industries. It provides crucial data for validating weapon systems and precision manufacturing processes etc. However, existing measurement methods face challenges such as limited dynamic range, discontinuous observations, and high costs. This paper presents a new approach leveraging an event-based multi-view photogrammetric system, which aims to address the aforementioned challenges. First, the monotonicity in the spatiotemporal distribution of events is leveraged to extract the target's leading-edge features, eliminating the tailing effect that complicates motion measurements. Then, reprojection error is used to associate events with the target's trajectory, providing more data than traditional intersection methods. Finally, a target velocity decay model is employed to fit the data, enabling accurate motion measurements via ours multi-view data joint computation. In a light gas gun fragment test, the proposed method showed a measurement deviation of 4.47% compared to the electromagnetic speedometer.
Related papers
- Gaussian kernel-based motion measurement [18.979649159405962]
We develop a novel Gaussian kernel-based motion measurement method, which can extract the motion between different frames via tracking the location of Gaussian kernels.<n>The motion consistency, which fits practical structural conditions, and a super-resolution constraint, are introduced to increase accuracy and robustness of our method.<n> Numerical and experimental validations show that it can consistently reach high accuracy without customized parameter setup for different test samples.
arXiv Detail & Related papers (2025-07-18T06:49:57Z) - Inference-Time Gaze Refinement for Micro-Expression Recognition: Enhancing Event-Based Eye Tracking with Motion-Aware Post-Processing [2.5465367830324905]
Event-based eye tracking holds significant promise for fine-grained cognitive state inference.<n>We introduce a model-agnostic, inference-time refinement framework to enhance the output of existing event-based gaze estimation models.
arXiv Detail & Related papers (2025-06-14T14:48:11Z) - EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.<n>This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.<n>For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.<n>The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
arXiv Detail & Related papers (2025-03-14T13:15:54Z) - Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>It tackles the challenges posed by spatial sparsity and motion sensitivity in events.<n>It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras [33.81592783496106]
Event-based visual odometry aims at solving tracking and mapping subproblems (typically in parallel)<n>We build an event-based stereo visual-inertial odometry system on top of a direct pipeline.<n>The resulting system scales well with modern high-resolution event cameras.
arXiv Detail & Related papers (2024-10-12T05:35:27Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - A 5-Point Minimal Solver for Event Camera Relative Motion Estimation [47.45081895021988]
We introduce a novel minimal 5-point solver that estimates line parameters and linear camera velocity projections, which can be fused into a single, averaged linear velocity when considering multiple lines.
Our method consistently achieves a 100% success rate in estimating linear velocity where existing closed-form solvers only achieve between 23% and 70%.
arXiv Detail & Related papers (2023-09-29T08:30:18Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Motion Robust High-Speed Light-Weighted Object Detection With Event
Camera [24.192961837270172]
We propose a motion robust and high-speed detection pipeline which better leverages the event data.
Experiments on two typical real-scene event camera object detection datasets show that our method is competitive in terms of accuracy, efficiency, and the number of parameters.
arXiv Detail & Related papers (2022-08-24T15:15:24Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.