論文の概要: Predictability-Aware Compression and Decompression Framework for Multichannel Time Series Data
- arxiv url: http://arxiv.org/abs/2506.00614v1
- Date: Sat, 31 May 2025 15:53:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.291403
- Title: Predictability-Aware Compression and Decompression Framework for Multichannel Time Series Data
- Title(参考訳): 予測可能性を考慮したマルチチャネル時系列データの圧縮・圧縮フレームワーク
- Authors: Ziqi Liu, Pei Zeng, Yi Ding,
- Abstract要約: 本稿では,予測可能性を考慮した圧縮圧縮フレームワークを提案し,ランタイムの削減,通信コストの低減,予測精度の維持を図る。
提案するフレームワークは時間効率が高く,多数のチャネルでスケーラブルである。
- 参考スコア(独自算出の注目度): 13.135119836937239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world multichannel time series prediction faces growing demands for efficiency across edge and cloud environments, making channel compression a timely and essential problem. Motivated by success of Multiple-Input Multiple-Output (MIMO) methods, we propose a predictability-aware compression-decompression framework to reduce runtime, lower communication cost, and maintain prediction accuracy across diverse predictors. The core idea involves using a circular periodicity key matrix with orthogonality to capture underlying time series predictability during compression and to mitigate reconstruction errors during decompression by relaxing oversimplified data assumptions. Theoretical and empirical analyses show that the proposed framework is both time-efficient and scalable under a large number of channels. Extensive experiments on six datasets across various predictors demonstrate that the proposed method achieves superior overall performance by jointly considering prediction accuracy and runtime, while maintaining strong compatibility with diverse predictors.
- Abstract(参考訳): 実世界のマルチチャネル時系列予測では、エッジとクラウド環境間の効率性の要求が増大し、チャネル圧縮がタイムリーで重要な問題となっている。
多重入力多重出力(MIMO)方式の成功により,予測可能性を考慮した圧縮圧縮フレームワークを提案し,ランタイムの削減,通信コストの低減,予測精度の維持を実現した。
その中核となる考え方は、直交性を持つ円形周期鍵行列を用いて圧縮中の時系列予測可能性を捕捉し、過度に単純化されたデータ仮定を緩和することで圧縮中の再構成誤差を軽減することである。
理論的および実証的な分析により、提案するフレームワークは、多数のチャネルにおいて、時間効率と拡張性の両方を示している。
提案手法は, 予測精度と実行時を両立させながら, 多様な予測器との互換性を保ちながら, 予測精度と実行時を両立させることにより, 総合的な性能の向上を図っている。
関連論文リスト
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
本稿では,時系列データの累積分布関数(CDF)をモデル化するための新しいアーキテクチャであるPerceiver-CDFを提案する。
提案手法は,マルチモーダル時系列予測に適したコプラに基づくアテンション機構と,知覚アーキテクチャを組み合わせたものである。
単調かつマルチモーダルなベンチマークの実験は、最先端の手法よりも20%改善されていることを一貫して示している。
論文 参考訳(メタデータ) (2023-10-03T01:13:17Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - UTOPIA: Universally Trainable Optimal Prediction Intervals Aggregation [9.387706860375461]
UTOPIA(Universally Trainable Optimal Predictive Intervals Aggregation)と呼ばれる新しい戦略を導入する。
この技術は、予測帯域の平均幅を小さく保ちながら、複数の予測間隔を効率的に集約し、カバレッジを確保する。
合成データとファイナンスとマクロ経済学における2つの実世界のデータセットに適用することで検証されている。
論文 参考訳(メタデータ) (2023-06-28T20:38:37Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Copula Conformal Prediction for Multi-step Time Series Forecasting [18.298634240183862]
時系列予測のためのCopula Conformal Predictionアルゴリズム,CopulaCPTSを提案する。
我々は,CopulaCPTSが既存の手法よりも多段階予測タスクに対して,よりキャリブレーションと鋭い信頼区間を生成することを示す。
論文 参考訳(メタデータ) (2022-12-06T19:32:06Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Model Compression for Dynamic Forecast Combination [9.281199058905017]
動的予測アンサンブルを個々のモデルに圧縮すると、同様の予測性能が得られることを示す。
また,平均ランクが最も高い圧縮個々モデルは規則に基づく回帰モデルであることを示した。
論文 参考訳(メタデータ) (2021-04-05T09:55:35Z) - Critical Parameters for Scalable Distributed Learning with Large Batches
and Asynchronous Updates [67.19481956584465]
飽和を伴う分散トレーニング(SGD)の効率は、バッチサイズと、実装における停滞に決定的に依存することが実験的に観察されている。
結果がタイトであることを示し、数値実験で重要な結果を示しています。
論文 参考訳(メタデータ) (2021-03-03T12:08:23Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。