SATA-BENCH: Select All That Apply Benchmark for Multiple Choice Questions
- URL: http://arxiv.org/abs/2506.00643v2
- Date: Fri, 06 Jun 2025 23:00:29 GMT
- Title: SATA-BENCH: Select All That Apply Benchmark for Multiple Choice Questions
- Authors: Weijie Xu, Shixian Cui, Xi Fang, Chi Xue, Stephanie Eckman, Chandan K. Reddy,
- Abstract summary: Large language models (LLMs) are increasingly evaluated on single-answer multiple-choice tasks.<n>Many real-world problems require identifying all correct answers from a set of options.<n>We introduce SATA-BENCH, the first dedicated benchmark for evaluating LLMs on Select All That Apply questions.
- Score: 10.570975662243862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly evaluated on single-answer multiple-choice tasks, yet many real-world problems require identifying all correct answers from a set of options. This capability remains underexplored. We introduce SATA-BENCH, the first dedicated benchmark for evaluating LLMs on Select All That Apply (SATA) questions across diverse domains, including reading comprehension, law, and biomedicine. Our evaluation of 27 open-source and proprietary models reveals a significant gap: even the strongest model achieves only 41.8% exact match, exposing LLMs' inability to reliably identify all correct answers. We find that this weakness stems from two core challenges: selection bias - models favor certain choices regardless of content, and count bias - models fail to predict the correct number of answers. To address these issues, we propose Choice Funnel, a decoding strategy that combines token debiasing with adaptive thresholding to guide models toward complete and accurate selections. Choice Funnel achieves up to 29% higher exact match than competitive baselines while reducing inference cost by over 64%. Our findings expose fundamental limitations in current LLMs and introduce a new framework for diagnosing and improving multi-answer reasoning. We release SATA-BENCH and Choice Funnel to promote LLM development for robust decision-making in realistic, multi-answer applications.
Related papers
- Self-ensemble: Mitigating Confidence Distortion for Large Language Models [89.03110940871765]
Large Language Models exhibit a confidence distortion problem on multi-choice question-answering.<n>We propose Self-ensemble to solve this problem.<n> Experimental results on three LLMs and datasets demonstrate that Self-ensemble comprehensively addresses the confidence distortion problem.
arXiv Detail & Related papers (2025-06-02T17:59:29Z) - Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering [78.89231943329885]
Multiple-Choice Question Answering (MCQA) is widely used to evaluate Large Language Models (LLMs)<n>We show that multiple factors can significantly impact the reported performance of LLMs.<n>We analyze whether existing answer extraction methods are aligned with human judgment.
arXiv Detail & Related papers (2025-03-19T08:45:03Z) - DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding [76.3876070043663]
We propose DriveLMM-o1, a dataset and benchmark designed to advance step-wise visual reasoning for autonomous driving.<n>Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning.<n>Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model.
arXiv Detail & Related papers (2025-03-13T17:59:01Z) - None of the Others: a General Technique to Distinguish Reasoning from Memorization in Multiple-Choice LLM Evaluation Benchmarks [0.9831489366502301]
We introduce a general variation method for multiple-choice questions that completely dissociates the correct answer from previously seen tokens or concepts.<n>Using this method, we evaluate state-of-the-art proprietary and open-source LLMs on two datasets available in English and Spanish.<n>Results show that all models experience remarkable accuracy drops, with an average loss of 57% on MMLU and 50% on UNED-Access 2024.
arXiv Detail & Related papers (2025-02-18T14:32:44Z) - Listening to the Wise Few: Select-and-Copy Attention Heads for Multiple-Choice QA [19.78468832417275]
We introduce new scores that better capture and reveal model's underlying knowledge.
Based on these scores, our method improves knowledge extraction, yielding up to 16% gain for LLaMA2-7B.
The accuracy on a simple synthetic dataset, where the model explicitly knows the right answer, increases by almost 60%.
arXiv Detail & Related papers (2024-10-03T09:53:48Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - OptLLM: Optimal Assignment of Queries to Large Language Models [12.07164196530872]
We propose a framework for addressing the cost-effective query allocation problem for large language models (LLMs)
Our framework, named OptLLM, provides users with a range of optimal solutions to choose from, aligning with their budget constraints and performance preferences.
To evaluate the effectiveness of OptLLM, we conduct extensive experiments on various types of tasks, including text classification, question answering, sentiment analysis, reasoning, and log parsing.
arXiv Detail & Related papers (2024-05-24T01:05:37Z) - Large Language Models Are Not Robust Multiple Choice Selectors [117.72712117510953]
Multiple choice questions (MCQs) serve as a common yet important task format in the evaluation of large language models (LLMs)
This work shows that modern LLMs are vulnerable to option position changes due to their inherent "selection bias"
We propose a label-free, inference-time debiasing method, called PriDe, which separates the model's prior bias for option IDs from the overall prediction distribution.
arXiv Detail & Related papers (2023-09-07T17:44:56Z) - Large Language Models Sensitivity to The Order of Options in
Multiple-Choice Questions [5.187383020960245]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various NLP tasks.
Previous works have shown these models are sensitive towards prompt wording, and few-shot demonstrations and their order.
This paper investigates sensitivity of LLMs towards the order of options in multiple-choice questions.
arXiv Detail & Related papers (2023-08-22T14:54:59Z) - Improving Selective Visual Question Answering by Learning from Your
Peers [74.20167944693424]
Visual Question Answering (VQA) models can have difficulties abstaining from answering when they are wrong.
We propose Learning from Your Peers (LYP) approach for training multimodal selection functions for making abstention decisions.
Our approach uses predictions from models trained on distinct subsets of the training data as targets for optimizing a Selective VQA model.
arXiv Detail & Related papers (2023-06-14T21:22:01Z) - Getting MoRE out of Mixture of Language Model Reasoning Experts [71.61176122960464]
We propose a Mixture-of-Reasoning-Experts (MoRE) framework that ensembles diverse specialized language models.
We specialize the backbone language model with prompts optimized for different reasoning categories, including factual, multihop, mathematical, and commonsense reasoning.
Our human study confirms that presenting expert predictions and the answer selection process helps annotators more accurately calibrate when to trust the system's output.
arXiv Detail & Related papers (2023-05-24T02:00:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.