論文の概要: Clinical Annotations for Automatic Stuttering Severity Assessment
- arxiv url: http://arxiv.org/abs/2506.00644v1
- Date: Sat, 31 May 2025 17:18:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.386091
- Title: Clinical Annotations for Automatic Stuttering Severity Assessment
- Title(参考訳): 自動発声重症度評価のための注釈
- Authors: Ana Rita Valente, Rufael Marew, Hawau Olamide Toyin, Hamdan Al-Ali, Anelise Bohnen, Inma Becerra, Elsa Marta Soares, Goncalo Leal, Hanan Aldarmaki,
- Abstract要約: スタタリングは、効果的な評価と治療のために専門的な専門知識を必要とする複雑な疾患である。
本稿では,FluencyBankのデータセットを,確立された臨床基準に基づく新たなスタブリングアノテーションスキームで強化する取り組みについて述べる。
- 参考スコア(独自算出の注目度): 0.5611004142746667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stuttering is a complex disorder that requires specialized expertise for effective assessment and treatment. This paper presents an effort to enhance the FluencyBank dataset with a new stuttering annotation scheme based on established clinical standards. To achieve high-quality annotations, we hired expert clinicians to label the data, ensuring that the resulting annotations mirror real-world clinical expertise. The annotations are multi-modal, incorporating audiovisual features for the detection and classification of stuttering moments, secondary behaviors, and tension scores. In addition to individual annotations, we additionally provide a test set with highly reliable annotations based on expert consensus for assessing individual annotators and machine learning models. Our experiments and analysis illustrate the complexity of this task that necessitates extensive clinical expertise for valid training and evaluation of stuttering assessment models.
- Abstract(参考訳): スタタリングは、効果的な評価と治療のために専門的な専門知識を必要とする複雑な疾患である。
本稿では,FluencyBankのデータセットを,確立された臨床基準に基づく新たなスタブリングアノテーションスキームで強化する取り組みについて述べる。
高品質なアノテーションを実現するために、私たちは専門家のクリニックを雇い、その結果のアノテーションが実際の臨床の専門知識を反映していることを確認した。
アノテーションはマルチモーダルであり、発散モーメント、二次動作、緊張スコアの検出と分類にオーディオ視覚的特徴を取り入れている。
個々のアノテーションに加えて,個々のアノテーションや機械学習モデルを評価する専門家のコンセンサスに基づいた,信頼性の高いアノテーションを備えたテストセットも提供する。
本研究は, この課題の複雑度を考察し, 評価モデルの妥当性評価と評価のために, 広範囲な臨床専門知識を必要とする課題について考察した。
関連論文リスト
- Automating Feedback Analysis in Surgical Training: Detection, Categorization, and Assessment [65.70317151363204]
本研究は,非構造化現実記録からの外科的対話を再構築するための最初の枠組みを紹介する。
外科訓練では,ライブ手術中に訓練者に提供する形式的言語フィードバックは,安全性の確保,行動の即時修正,長期的スキル獲得の促進に不可欠である。
本フレームワークは,音声活動の検出,話者ダイアリゼーション,自動音声認識と,幻覚を除去する新たな拡張機能を統合する。
論文 参考訳(メタデータ) (2024-12-01T10:35:12Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
アーキテクチャとフレームワークのバイアスがモデルのパフォーマンスにどのように影響するかを示します。
実験では、プリプロセッシングと実装の選択に基づいて、最大20%の性能変化を示す。
我々は,現在の深層計算法と医療要件の相違点を同定する。
論文 参考訳(メタデータ) (2024-07-11T12:33:28Z) - A Comprehensive Rubric for Annotating Pathological Speech [0.0]
音声学, 流音学, 韻律学など, 音声品質の様々な側面に基づく包括的ルーリックを導入する。
本研究の目的は,ダウン症候群患者の発話中の誤りを識別するための標準化基準を確立することである。
論文 参考訳(メタデータ) (2024-04-29T16:44:27Z) - Lightly Weighted Automatic Audio Parameter Extraction for the Quality
Assessment of Consensus Auditory-Perceptual Evaluation of Voice [18.8222742272435]
提案手法は, ジッタ, 絶対ジッタ, シャマー, ハーモニック・ツー・ノイズ比 (HNR) , ゼロクロスという, 年齢, 性別, および5つの音響パラメータを利用する。
その結果,提案手法は最先端技術(SOTA)手法と類似し,一般的な音声事前学習モデルを用いて得られた潜在表現よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-11-27T07:19:22Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
臨床環境でのオーディオ・ビジュアル・モデリングを考察し、人間の専門的アノテーションを使わずに医学的表現を学習するためのソリューションを提供する。
この目的のために, 単純かつ効果的なマルチモーダル自己教師型学習フレームワークを提案する。
提案手法は,音声のみを基準として,超音波画像中の解剖学的関心領域をローカライズすることができる。
論文 参考訳(メタデータ) (2023-10-25T08:55:48Z) - A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images [71.26717896083433]
自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
論文 参考訳(メタデータ) (2023-09-05T19:45:09Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
本稿では,ロバストな医用画像分類のためのグローバルおよびローカルな表現学習を用いた新しい協調学習パラダイムを提案する。
ノイズラベルフィルタを用いた自己アンサンブルモデルを用いて、クリーンでノイズの多いサンプルを効率的に選択する。
また,ネットワークを暗黙的に正規化してノイズの多いサンプルを利用するための,グローバルかつ局所的な表現学習手法を設計する。
論文 参考訳(メタデータ) (2022-05-10T07:50:08Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
近年,機械学習モデルによる臨床相談ノートの作成が急速に進んでいる。
5人の臨床医が57件のモック・コンサルテーションを聴き、自作のノートを書き、自動的に生成されたノートを編集し、全てのエラーを抽出する、広範囲にわたる人的評価研究を行った。
単純な文字ベースのLevenshtein距離測定は、BertScoreのような一般的なモデルベースの測定値に比較して、同等に動作します。
論文 参考訳(メタデータ) (2022-04-01T14:04:16Z) - Learning from Multiple Expert Annotators for Enhancing Anomaly Detection
in Medical Image Analysis [0.31317409221921133]
医用画像解析において、複数の専門家アノテータは「地上の真実ラベル」に関する主観的な推定をしばしば生成する。
深層学習に基づく検知器の訓練のために,複数の放射線学の専門家によるアノテーションを組み合わせた簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-20T17:57:26Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。