論文の概要: AWML: An Open-Source ML-based Robotics Perception Framework to Deploy for ROS-based Autonomous Driving Software
- arxiv url: http://arxiv.org/abs/2506.00645v1
- Date: Sat, 31 May 2025 17:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.387582
- Title: AWML: An Open-Source ML-based Robotics Perception Framework to Deploy for ROS-based Autonomous Driving Software
- Title(参考訳): AWML:ROSベースの自動運転ソフトウェアをデプロイするためのオープンソースのMLベースのロボティクス知覚フレームワーク
- Authors: Satoshi Tanaka, Samrat Thapa, Kok Seang Tan, Amadeusz Szymko, Lobos Kenzo, Koji Minoda, Shintaro Tomie, Kotaro Uetake, Guolong Zhang, Isamu Yamashita, Takamasa Horibe,
- Abstract要約: AWMLは、ロボット工学のためのMLOpsをサポートするように設計されたフレームワークである。
自動運転のための機械学習インフラストラクチャを提供する。
自動ラベリング、半自動ラベリング、データマイニング技術が組み込まれている。
- 参考スコア(独自算出の注目度): 2.795794257373714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning technologies have played an important role in robotics, particularly in the development of autonomous robots and self-driving vehicles. As the industry matures, robotics frameworks like ROS 2 have been developed and provides a broad range of applications from research to production. In this work, we introduce AWML, a framework designed to support MLOps for robotics. AWML provides a machine learning infrastructure for autonomous driving, supporting not only the deployment of trained models to robotic systems, but also an active learning pipeline that incorporates auto-labeling, semi-auto-labeling, and data mining techniques.
- Abstract(参考訳): 近年、機械学習技術はロボット工学、特に自律ロボットや自動運転車の開発において重要な役割を果たしている。
業界が成熟するにつれて、ROS 2のようなロボティクスフレームワークが開発され、研究から製品まで幅広いアプリケーションを提供している。
本研究では,ロボット工学のためのMLOpsをサポートするフレームワークであるAWMLを紹介する。
AWMLは自動運転のための機械学習インフラストラクチャを提供し、トレーニングされたモデルをロボットシステムにデプロイするだけでなく、自動ラベリング、半自動ラベリング、データマイニング技術を組み込んだアクティブな学習パイプラインもサポートする。
関連論文リスト
- Deploying Foundation Model-Enabled Air and Ground Robots in the Field: Challenges and Opportunities [65.98704516122228]
基礎モデル(FM)をロボット工学に統合することで、ロボットは自然言語を理解し、環境のセマンティクスを推論できるようになった。
本稿では,FM対応ロボットを現場に展開する上で,大規模で非構造的な環境下でのロボットの運用に必要なミッションについて述べる。
数kmのミッションを持つ非構造環境下での大規模LLM対応ロボット計画の実証実験を行った。
論文 参考訳(メタデータ) (2025-05-14T15:28:43Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRTは、人間の監督を最小限に抑えて、完全に見えないシナリオで運用ロボットの展開をスケールアップするシステムである。
われわれはAutoRTが複数の建物にまたがる20以上のロボットに指示を提示し、遠隔操作と自律ロボットポリシーを通じて77万個の実ロボットエピソードを収集するデモを行った。
実験により,AutoRTが収集した「未使用データ」は極めて多種多様であり,AutoRTのLLMを使用することで,人間の好みに合わせることができるデータ収集ロボットの指示が可能であることを実証した。
論文 参考訳(メタデータ) (2024-01-23T18:45:54Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
機械学習(ML)は、コンピュータシステムにまたがる普及したツールとなっている。
ティニー・ロボット・ラーニング(Tiny Robot Learning)とは、リソースに制約された低コストの自律ロボットにMLを配置する手法である。
小型ロボット学習は、サイズ、重量、面積、パワー(SWAP)の制約によって困難にさらされる。
本稿では,小型ロボットの学習空間を簡潔に調査し,重要な課題を詳述し,MLシステム設計における将来的な仕事の機会を提案する。
論文 参考訳(メタデータ) (2022-05-11T19:36:15Z) - Autonomous Intruder Detection Using a ROS-Based Multi-Robot System
Equipped with 2D-LiDAR Sensors [0.5512295869673147]
本稿では,中央ロボットMIDNetによる全ロボットからの検知を集中処理する単一距離センサ/ロボットシナリオにおける侵入者検出のためのマルチロボットシステムを提案する。
この作業は、人手なしで倉庫に自律的なマルチロボットセキュリティソリューションを提供することを目的としている。
論文 参考訳(メタデータ) (2020-11-07T19:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。