DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains
- URL: http://arxiv.org/abs/2506.00708v1
- Date: Sat, 31 May 2025 20:56:54 GMT
- Title: DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains
- Authors: Yongkang Xiao, Sinian Zhang, Yi Dai, Huixue Zhou, Jue Hou, Jie Ding, Rui Zhang,
- Abstract summary: Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information.<n>DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG.<n>It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules.
- Score: 13.63225871556018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
Related papers
- Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - Democratizing Large Language Model-Based Graph Data Augmentation via Latent Knowledge Graphs [22.218522445858344]
Data augmentation is necessary for graph representation learning due to the scarcity and noise present in graph data.<n>We propose a black-box context-driven graph data augmentation approach, with the guidance of LLMs -- DemoGraph.<n>Our approach excels in scenarios involving electronic health records (EHRs), which validates its maximal utilization of contextual knowledge.
arXiv Detail & Related papers (2025-02-19T09:00:32Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.<n>We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.<n>This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.<n>We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.<n>Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation [9.286509119104563]
We introduce a novel graph-based Retrieval-Augmented Generation framework specifically designed for the medical domain, called MedGraphRAG.
Our approach is validated on 9 medical Q&A benchmarks, 2 health fact-checking benchmarks, and one collected dataset testing long-form generation.
arXiv Detail & Related papers (2024-08-08T03:11:12Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
Large Language and Graph Assistant (LLaGA) is an innovative model to handle the complexities of graph-structured data.
LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks.
Our experiments show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model.
arXiv Detail & Related papers (2024-02-13T02:03:26Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.