AKReF: An argumentative knowledge representation framework for structured argumentation
- URL: http://arxiv.org/abs/2506.00713v3
- Date: Tue, 15 Jul 2025 21:31:55 GMT
- Title: AKReF: An argumentative knowledge representation framework for structured argumentation
- Authors: Debarati Bhattacharjee, Ashish Anand,
- Abstract summary: We present a framework to convert argumentative texts into argument knowledge graphs (AKG)<n>The proposed argumentative knowledge representation framework (AKReF) extends the theoretical foundation.<n>We show its application in complex analyses such as extracting a conflict-free set and a maximal set of admissible arguments.
- Score: 0.9626666671366837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a framework to convert argumentative texts into argument knowledge graphs (AKG). The proposed argumentative knowledge representation framework (AKReF) extends the theoretical foundation and enables the AKG to provide a graphical view of the argumentative structure that is easier to understand. Starting with basic annotations of argumentative components (ACs) and argumentative relations (ARs), we enrich the information by constructing a knowledge base (KB) graph with metadata attributes for nodes. Next, we apply modus ponens on premises and inference rules from the KB to form arguments. From these arguments, we create an AKG. The nodes and edges of the AKG have attributes capturing key argumentative features such as the type of premise (e.g., axiom, ordinary premise, assumption), the type of inference rule (e.g., strict, defeasible), preference order over defeasible rules, markers (e.g., "therefore", "however"), and the type of attack (e.g., undercut, rebuttal, undermining). We identify inference rules by locating a specific set of markers, called inference markers (IM). This, in turn, makes it possible to identify undercut attacks previously undetectable in existing datasets. AKG prepares the ground for reasoning tasks, including checking the coherence of arguments and identifying opportunities for revision. For this, it is essential to find indirect relations, many of which are implicit. Our proposed AKG format, with annotated inference rules and modus ponens, helps reasoning models learn the implicit, indirect relations that require inference over arguments and their interconnections. We use an essay from the AAEC dataset to illustrate the framework. We further show its application in complex analyses such as extracting a conflict-free set and a maximal set of admissible arguments.
Related papers
- Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
We develop a robust and discriminative QA benchmark to measure temporal, causal, and character consistency understanding in narrative documents.<n>We then introduce Entity-Event RAG (E2RAG), a dual-graph framework that keeps separate entity and event subgraphs linked by a bipartite mapping.<n>Across ChronoQA, our approach outperforms state-of-the-art unstructured and KG-based RAG baselines, with notable gains on causal and character consistency queries.
arXiv Detail & Related papers (2025-06-06T10:07:21Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.<n>We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - Grounding LLM Reasoning with Knowledge Graphs [4.279373869671241]
We propose integrating reasoning strategies with Knowledge Graphs to anchor every step or "thought" of the reasoning chains in KG data.<n>We evaluate both agentic and automated search methods across several reasoning strategies, including Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT)<n>Our experiments demonstrate that this approach consistently outperforms baseline models.
arXiv Detail & Related papers (2025-02-18T19:20:46Z) - Few-shot Policy (de)composition in Conversational Question Answering [54.259440408606515]
We propose a neuro-symbolic framework to detect policy compliance using large language models (LLMs) in a few-shot setting.<n>We show that our approach soundly reasons about policy compliance conversations by extracting sub-questions to be answered, assigning truth values from contextual information, and explicitly producing a set of logic statements from the given policies.<n>We apply this approach to the popular PCD and conversational machine reading benchmark, ShARC, and show competitive performance with no task-specific finetuning.
arXiv Detail & Related papers (2025-01-20T08:40:15Z) - A Methodology for Incompleteness-Tolerant and Modular Gradual Semantics for Argumentative Statement Graphs [15.717458041314194]
We provide a novel methodology for obtaining Gradual semantics for statement graphs.<n>First, it naturally accommodates incomplete information, so that arguments with partially specified premises can play a meaningful role in the evaluation.<n>Second, it is modularly defined to leverage on any GS for QBAFs.
arXiv Detail & Related papers (2024-10-29T16:38:35Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
We propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability.
To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer.
Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively.
arXiv Detail & Related papers (2024-10-16T06:47:18Z) - Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs [61.796960984541464]
We present COM2 (COMplex COMmonsense), a new dataset created by sampling logical queries.
We verbalize them using handcrafted rules and large language models into multiple-choice and text generation questions.
Experiments show that language models trained on COM2 exhibit significant improvements in complex reasoning ability.
arXiv Detail & Related papers (2024-03-12T08:13:52Z) - CASA: Causality-driven Argument Sufficiency Assessment [79.13496878681309]
We propose CASA, a zero-shot causality-driven argument sufficiency assessment framework.
PS measures how likely introducing the premise event would lead to the conclusion when both the premise and conclusion events are absent.
Experiments on two logical fallacy detection datasets demonstrate that CASA accurately identifies insufficient arguments.
arXiv Detail & Related papers (2024-01-10T16:21:18Z) - Hi-ArG: Exploring the Integration of Hierarchical Argumentation Graphs
in Language Pretraining [62.069374456021016]
We propose the Hierarchical Argumentation Graph (Hi-ArG), a new structure to organize arguments.
We also introduce two approaches to exploit Hi-ArG, including a text-graph multi-modal model GreaseArG and a new pre-training framework augmented with graph information.
arXiv Detail & Related papers (2023-12-01T19:03:38Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
This work adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis.
We characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained questions.
We develop the first-of-its-kind QUD that derives a dependency structure of questions over full documents.
arXiv Detail & Related papers (2022-10-12T03:53:12Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument.
We propose DisCOC to inject and fuse the sentence-level structural information with contextualized features derived from large-scale language models.
arXiv Detail & Related papers (2021-06-02T06:49:19Z) - Focusing Knowledge-based Graph Argument Mining via Topic Modeling [43.69396080017806]
We study the task of sentence-level argument mining, as arguments mostly require some degree of world knowledge to be identified and understood.
We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata.
Also, we build a second graph based on topic-specific articles found via Google to tackle the general incompleteness of structured knowledge bases.
arXiv Detail & Related papers (2021-02-03T14:39:58Z) - SRLGRN: Semantic Role Labeling Graph Reasoning Network [22.06211725256875]
This work deals with the challenge of learning and reasoning over multi-hop question answering (QA)
We propose a graph reasoning network based on the semantic structure of the sentences to learn cross paragraph reasoning paths.
Our proposed approach shows competitive performance on the HotpotQA distractor setting benchmark compared to the recent state-of-the-art models.
arXiv Detail & Related papers (2020-10-07T18:51:17Z) - Dependently Typed Knowledge Graphs [4.157595789003928]
We show how standardized semantic web technologies (RDF and its query language SPARQL) can be reproduced in a unified manner with dependent type theory.
In addition to providing the basic functionalities of knowledge graphs, dependent types add expressiveness in encoding both entities and queries.
arXiv Detail & Related papers (2020-03-08T14:04:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.