論文の概要: Pitfalls in Evaluating Language Model Forecasters
- arxiv url: http://arxiv.org/abs/2506.00723v1
- Date: Sat, 31 May 2025 21:49:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.508152
- Title: Pitfalls in Evaluating Language Model Forecasters
- Title(参考訳): 言語モデル予測器の評価における落とし穴
- Authors: Daniel Paleka, Shashwat Goel, Jonas Geiping, Florian Tramèr,
- Abstract要約: 我々はコミュニティとして、大きな言語モデルを評価するような結論に注意する必要があると論じている。
1) 時間的リークによる評価結果の信頼の難しさ,(2) 評価性能から実世界の予測への外挿の難しさ,の2つのカテゴリを識別する。
- 参考スコア(独自算出の注目度): 45.439169161521406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have recently been applied to forecasting tasks, with some works claiming these systems match or exceed human performance. In this paper, we argue that, as a community, we should be careful about such conclusions as evaluating LLM forecasters presents unique challenges. We identify two broad categories of issues: (1) difficulty in trusting evaluation results due to many forms of temporal leakage, and (2) difficulty in extrapolating from evaluation performance to real-world forecasting. Through systematic analysis and concrete examples from prior work, we demonstrate how evaluation flaws can raise concerns about current and future performance claims. We argue that more rigorous evaluation methodologies are needed to confidently assess the forecasting abilities of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、最近、タスクの予測に応用され、これらのシステムが人間のパフォーマンスに適合または超えていると主張する研究もある。
本稿では,コミュニティとして,LSM予測器の評価が独特な課題を提起するなど,このような結論に留意すべきである,と論じる。
1) 時間的リークによる評価結果の信頼の難しさ,(2) 評価性能から実世界の予測への外挿の難しさ,の2つのカテゴリを識別する。
先行研究の体系的な分析と具体例を通して、評価欠陥が現在および将来のパフォーマンスクレームに対する懸念をいかに引き起こすかを実証する。
LLMの予測能力を確実に評価するためには、より厳密な評価手法が必要であると論じる。
関連論文リスト
- A Systematic Survey and Critical Review on Evaluating Large Language Models: Challenges, Limitations, and Recommendations [35.12731651234186]
大規模言語モデル(LLM)は、その顕著な能力により、最近大きな注目を集めている。
我々はこれらの不整合や信頼できない評価を引き起こす主要な課題と限界を体系的にレビューする。
批判的なレビューに基づいて、LLM評価が再現可能で、信頼性があり、堅牢であることを保証するために、私たちの視点と勧告を提示します。
論文 参考訳(メタデータ) (2024-07-04T17:15:37Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Beyond Probabilities: Unveiling the Misalignment in Evaluating Large Language Models [24.445829787297658]
大規模言語モデル(LLM)は、様々なアプリケーションにまたがる顕著な機能を示している。
本研究の目的は,複数選択質問(MCQ)におけるLCMを用いた確率に基づく評価手法の有効性を検討することである。
実験により,有意な確率ベース評価法が生成に基づく予測と不適切に一致していることが判明した。
論文 参考訳(メタデータ) (2024-02-21T15:58:37Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
大規模言語モデル(LLM)が人間にとって信頼できる代替手段であるかどうかを解析する。
本稿では、従来のタスク(例えば、ストーリー生成)とアライメントタスク(例えば、数学推論)の両方について検討する。
LLM評価器は不要な基準を生成したり、重要な基準を省略することができる。
論文 参考訳(メタデータ) (2023-10-30T17:04:35Z) - Evaluation Gaps in Machine Learning Practice [13.963766987258161]
実際に、機械学習モデルの評価は、しばしば、非文脈化された予測行動の狭い範囲に焦点を当てる。
評価対象の理想化された幅と実際の評価対象の狭い焦点との間の評価ギャップについて検討した。
これらの特性を研究することで、規範的な影響を持つコミットメントの範囲について、機械学習分野の暗黙の仮定を実証する。
論文 参考訳(メタデータ) (2022-05-11T04:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。