KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision
- URL: http://arxiv.org/abs/2506.00783v1
- Date: Sun, 01 Jun 2025 02:20:45 GMT
- Title: KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision
- Authors: Rong Wu, Pinlong Cai, Jianbiao Mei, Licheng Wen, Tao Hu, Xuemeng Yang, Daocheng Fu, Botian Shi,
- Abstract summary: Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness.<n>We propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES) to enhance the reasoning ability of LLMs.<n> KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths.
- Score: 8.025866693669622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness. This issue, often manifesting as hallucinations or unattributable reasoning processes, limits their applicability in complex reasoning scenarios. To address this, we propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES), a novel framework that enhances the reasoning ability of LLMs through explicit supervision over reasoning paths and processes. KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths. At inference phase, the model adapts to both KG-available and KG-unavailable scenarios, retrieving reasoning paths from a KG when possible or predicting plausible reasoning paths with only intrinsic knowledge when not. This design enables the model to reason in an explainable and source-attributable pattern. Through extensive experiments on complex reasoning tasks, we demonstrate that KG-TRACES significantly outperforms existing SOTA: it improves Hits@1 by 1.6% and F1 by 4.7% on WebQSP, and achieves improvements of 4.8% in Hits@1 and 2.1% in F1 on CWQ. Moreover, we show its transferability to specialized domains such as medicine. By visualizing the intermediate steps of reasoning processes, we further show that the explicit supervision introduced by KG-TRACES leads to more stable and goal-directed reasoning processes, aligning closely with correct answers. Code is available at https://github.com/Edaizi/KG-TRACES.
Related papers
- CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
Chain-of-thought (CoT) reasoning enables large language models to break down complex problems into interpretable intermediate steps.<n>We introduce groundingS, a framework that formulates CoT reasoning as a Markov decision process (MDP) with latent state transitions.<n>We show improvements in reasoning accuracy, diversity, and exploration efficiency across benchmark reasoning tasks.
arXiv Detail & Related papers (2025-07-10T21:32:18Z) - Thinking About Thinking: SAGE-nano's Inverse Reasoning for Self-Aware Language Models [0.0]
Large Language Models (LLMs) have demonstrated remarkable capabilities at solving complex reasoning tasks with Chain-of-Thought prompting.<n>We introduce textbfinverse reasoning, a novel paradigm enabling LLMs to decompose and explain their own reasoning chains post-hoc.<n>Our work creates new avenues for transparent AI systems and closes significant gaps in AI safety, education, and scientific discovery.
arXiv Detail & Related papers (2025-06-30T09:53:41Z) - Reason-Align-Respond: Aligning LLM Reasoning with Knowledge Graphs for KGQA [25.658206998291917]
We present Reason-Align-Respond (RAR), a framework that integrates reasoning with knowledge graphs.<n>RAR generates high-quality, interpretable reasoning chains well-aligned with knowledge graphs.<n>RAR exhibits strong zero-shot generalization capabilities and maintains computational efficiency during inference.
arXiv Detail & Related papers (2025-05-27T10:04:53Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [92.71304585906624]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.<n>We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.<n>GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - Causal Reasoning in Large Language Models: A Knowledge Graph Approach [6.5344638992876085]
Large language models (LLMs) typically improve performance by either retrieving semantically similar information, or enhancing reasoning abilities through structured prompts like chain-of-thought.
This paper proposes a knowledge graph (KG)-based random-walk reasoning approach that leverages causal relationships.
arXiv Detail & Related papers (2024-10-15T13:24:44Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
Large Language Models (LLMs) are often challenged by generating erroneous or hallucinated responses.<n>We propose a unified framework, FiDeLiS, designed to improve the factuality of LLM responses by anchoring answers to verifiable reasoning steps retrieved from Knowledge Graphs.<n>Our method, as a training-free framework, not only improve the performance but also enhance the factuality and interpretability across different benchmarks.
arXiv Detail & Related papers (2024-05-22T17:56:53Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
We view LMs as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time.
We formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs.
Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths.
arXiv Detail & Related papers (2024-02-05T18:25:51Z) - Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning [104.92384929827776]
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks.
They lack up-to-date knowledge and experience hallucinations during reasoning.
Knowledge graphs (KGs) offer a reliable source of knowledge for reasoning.
arXiv Detail & Related papers (2023-10-02T10:14:43Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.