Thinking About Thinking: SAGE-nano's Inverse Reasoning for Self-Aware Language Models
- URL: http://arxiv.org/abs/2507.00092v1
- Date: Mon, 30 Jun 2025 09:53:41 GMT
- Title: Thinking About Thinking: SAGE-nano's Inverse Reasoning for Self-Aware Language Models
- Authors: Basab Jha, Firoj Paudel, Ujjwal Puri, Zhang Yuting, Choi Donghyuk, Wang Junhao,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable capabilities at solving complex reasoning tasks with Chain-of-Thought prompting.<n>We introduce textbfinverse reasoning, a novel paradigm enabling LLMs to decompose and explain their own reasoning chains post-hoc.<n>Our work creates new avenues for transparent AI systems and closes significant gaps in AI safety, education, and scientific discovery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities at solving complex reasoning tasks with Chain-of-Thought (CoT) prompting, but their decision-making processes remain somewhat blackbox. We introduce textbfinverse reasoning, a novel paradigm enabling LLMs to decompose and explain their own reasoning chains post-hoc. Our approach, used in SAGE-nano, a 4-billion-parameter reasoning model, employs a metacognitive structure that reflects back via attention processes to identify major decision points and generate explanations of reasoning choices. While typical CoT approaches are directed towards forward reasoning generation, inverse reasoning provides insight into why specific reasoning chains were selected over others. Through thorough testing of logical reasoning puzzles, math problems and ethical dilemmas from AQUA-RAT, CommonsenseQA, and customized benchmarks, we demonstrate that SAGE-nano is at the cutting edge both on reasoning accuracy (74.6% on AQUA-RAT) and explanation quality (92.1% human preference score) for its task, and offers performance almost on par with models like Claude-3.5 Sonnet or GPT-4o. Our contributions are: (i) the first rigorous framework for LLM self-reflection via inverse reasoning, (ii) a novel metalearning framework to reverse the attention flow, (iii) comprehensive evaluation frameworks for reasoning transparency, and (iv) evidence that increasing reasoning using inverse reasoning improves interpretability along with reasoning performance. Our work creates new avenues for transparent AI systems and closes significant gaps in AI safety, education, and scientific discovery.
Related papers
- KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision [8.025866693669622]
Large language models (LLMs) have made remarkable strides in various natural language processing tasks, but their performance on complex reasoning problems remains hindered by a lack of explainability and trustworthiness.<n>We propose Knowledge Graph-constrained Trajectory Reasoning Attribution and Chain Explanation Supervision (KG-TRACES) to enhance the reasoning ability of LLMs.<n> KG-TRACES jointly supervises the model to: (1) predict symbolic relation paths, (2) predict full triple-level reasoning paths, and (3) generate attribution-aware reasoning processes grounded in the reasoning paths.
arXiv Detail & Related papers (2025-06-01T02:20:45Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Leveraging LLMs for Hypothetical Deduction in Logical Inference: A Neuro-Symbolic Approach [11.400815134634016]
We introduce LINA, a neuro-symbolic approach for faithful logical reasoning.
By enabling an LLM to autonomously perform the transition from propositional logic extraction to sophisticated logical reasoning, LINA bolsters the resilience of the reasoning process.
Empirical evaluations demonstrate that LINA substantially outperforms both established propositional logic frameworks and conventional prompting techniques.
arXiv Detail & Related papers (2024-10-29T06:38:46Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding [10.421832675327712]
We introduce contrastive decoding to stepwise proof generation, making use of negative reasoning paths to strengthen the model's capacity for logical deduction.<n> Experiments on EntailmentBank underscore the success of our method in augmenting the proof planning abilities of language models.
arXiv Detail & Related papers (2023-11-12T05:12:49Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
We propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy.
First, we categorize known conditions into two types: determinate and indeterminate premises This provides an oveall direction for the reasoning process and guides LLMs in converting indeterminate data into progressively determinate insights.
We automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps.
arXiv Detail & Related papers (2023-10-28T10:05:51Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [31.238220405009617]
Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention.<n>It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the context and requiring multi-hop reasoning.<n>In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs confront difficulties akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - LAMBADA: Backward Chaining for Automated Reasoning in Natural Language [11.096348678079574]
Backward Chaining algorithm, called LAMBADA, decomposes reasoning into four sub-modules.
We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods.
arXiv Detail & Related papers (2022-12-20T18:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.