Research Borderlands: Analysing Writing Across Research Cultures
- URL: http://arxiv.org/abs/2506.00784v2
- Date: Thu, 12 Jun 2025 00:27:14 GMT
- Title: Research Borderlands: Analysing Writing Across Research Cultures
- Authors: Shaily Bhatt, Tal August, Maria Antoniak,
- Abstract summary: We take a human-centered approach to discover and measure language-based cultural norms.<n>We focus on a single kind of culture, research cultures, and a single task, adapting writing across research cultures.
- Score: 9.863675790023589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving cultural competence of language technologies is important. However most recent works rarely engage with the communities they study, and instead rely on synthetic setups and imperfect proxies of culture. In this work, we take a human-centered approach to discover and measure language-based cultural norms, and cultural competence of LLMs. We focus on a single kind of culture, research cultures, and a single task, adapting writing across research cultures. Through a set of interviews with interdisciplinary researchers, who are experts at moving between cultures, we create a framework of structural, stylistic, rhetorical, and citational norms that vary across research cultures. We operationalise these features with a suite of computational metrics and use them for (a) surfacing latent cultural norms in human-written research papers at scale; and (b) highlighting the lack of cultural competence of LLMs, and their tendency to homogenise writing. Overall, our work illustrates the efficacy of a human-centered approach to measuring cultural norms in human-written and LLM-generated texts.
Related papers
- CulFiT: A Fine-grained Cultural-aware LLM Training Paradigm via Multilingual Critique Data Synthesis [41.261808170896686]
CulFiT is a novel training paradigm that leverages multilingual data and fine-grained reward modeling to enhance cultural sensitivity and inclusivity.<n>Our approach synthesizes diverse cultural-related questions, constructs critique data in culturally relevant languages, and employs fine-grained rewards to decompose cultural texts into verifiable knowledge units.
arXiv Detail & Related papers (2025-05-26T04:08:26Z) - From Word to World: Evaluate and Mitigate Culture Bias via Word Association Test [48.623761108859085]
We extend the human-centered word association test (WAT) to assess the alignment of large language models with cross-cultural cognition.<n>To mitigate the culture preference, we propose CultureSteer, an innovative approach that integrates a culture-aware steering mechanism.
arXiv Detail & Related papers (2025-05-24T07:05:10Z) - From Surveys to Narratives: Rethinking Cultural Value Adaptation in LLMs [57.43233760384488]
Adapting cultural values in Large Language Models (LLMs) presents significant challenges.<n>Prior work primarily aligns LLMs with different cultural values using World Values Survey (WVS) data.<n>In this paper, we investigate WVS-based training for cultural value adaptation and find that relying solely on survey data cane cultural norms and interfere with factual knowledge.
arXiv Detail & Related papers (2025-05-22T09:00:01Z) - CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
Large Language Models (LLMs) more deeply integrate into human life across various regions.<n>Existing approaches develop culturally aligned LLMs through fine-tuning with culture-specific corpora.<n>We introduce CAReDiO, a novel cultural data construction framework.
arXiv Detail & Related papers (2025-04-09T13:40:13Z) - Survey of Cultural Awareness in Language Models: Text and Beyond [39.77033652289063]
Large-scale deployment of large language models (LLMs) in various applications requires LLMs to be culturally sensitive to the user to ensure inclusivity.
Culture has been widely studied in psychology and anthropology, and there has been a recent surge in research on making LLMs more culturally inclusive.
arXiv Detail & Related papers (2024-10-30T16:37:50Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - What You Use is What You Get: Unforced Errors in Studying Cultural Aspects in Agile Software Development [2.9418191027447906]
Investigating the influence of cultural characteristics is challenging due to the multi-faceted concept of culture.
Cultural and social aspects are of high importance for their successful use in practice.
arXiv Detail & Related papers (2024-04-25T20:08:37Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
This research proposes a Cultural Alignment Test (Hoftede's CAT) to quantify cultural alignment using Hofstede's cultural dimension framework.
We quantitatively evaluate large language models (LLMs) against the cultural dimensions of regions like the United States, China, and Arab countries.
Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions.
arXiv Detail & Related papers (2023-08-25T14:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.