Bridging Supervised and Temporal Difference Learning with $Q$-Conditioned Maximization
- URL: http://arxiv.org/abs/2506.00795v1
- Date: Sun, 01 Jun 2025 02:49:26 GMT
- Title: Bridging Supervised and Temporal Difference Learning with $Q$-Conditioned Maximization
- Authors: Xing Lei, Zifeng Zhuang, Shentao Yang, Sheng Xu, Yunhao Luo, Fei Shen, Xuetao Zhang, Donglin Wang,
- Abstract summary: Supervised learning (SL) has emerged as an effective approach for offline reinforcement learning (RL) due to their simplicity, stability, and efficiency.<n>Recent studies show that SL methods lack the trajectory stitching capability, typically associated with temporal difference (TD)-based approaches.<n>We introduce $Q$-conditioned supervised learning for offline goal-conditioned RL.
- Score: 23.468621564156056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, supervised learning (SL) methodology has emerged as an effective approach for offline reinforcement learning (RL) due to their simplicity, stability, and efficiency. However, recent studies show that SL methods lack the trajectory stitching capability, typically associated with temporal difference (TD)-based approaches. A question naturally surfaces: How can we endow SL methods with stitching capability and bridge its performance gap with TD learning? To answer this question, we introduce $Q$-conditioned maximization supervised learning for offline goal-conditioned RL, which enhances SL with the stitching capability through $Q$-conditioned policy and $Q$-conditioned maximization. Concretely, we propose Goal-Conditioned Reinforced Supervised Learning (GCReinSL), which consists of (1) estimating the $Q$-function by CVAE from the offline dataset and (2) finding the maximum $Q$-value within the data support by integrating $Q$-function maximization with Expectile Regression. In inference time, our policy chooses optimal actions based on such a maximum $Q$-value. Experimental results from stitching evaluations on offline RL datasets demonstrate that our method outperforms prior SL approaches with stitching capabilities and goal data augmentation techniques.
Related papers
- Test-time Offline Reinforcement Learning on Goal-related Experience [50.94457794664909]
Research in foundation models has shown that performance can be substantially improved through test-time training.<n>We propose a novel self-supervised data selection criterion, which selects transitions from an offline dataset according to their relevance to the current state.<n>Our goal-conditioned test-time training (GC-TTT) algorithm applies this routine in a receding-horizon fashion during evaluation, adapting the policy to the current trajectory as it is being rolled out.
arXiv Detail & Related papers (2025-07-24T21:11:39Z) - Reinforcement Learning with Action Chunking [56.838297900091426]
We present Q-chunking, a recipe for improving reinforcement learning algorithms for long-horizon, sparse-reward tasks.<n>Our recipe is designed for the offline-to-online RL setting, where the goal is to leverage an offline prior dataset to maximize the sample-efficiency of online learning.<n>Our experimental results demonstrate that Q-chunking exhibits strong offline performance and online sample efficiency, outperforming prior best offline-to-online methods on a range of long-horizon, sparse-reward manipulation tasks.
arXiv Detail & Related papers (2025-07-10T17:48:03Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Scalable Online Exploration via Coverability [45.66375686120087]
Exploration is a major challenge in reinforcement learning, especially for high-dimensional domains that require function approximation.
We introduce a new objective, $L_Coverage, which generalizes previous exploration schemes and supports three fundamental desideratas.
$L_Coverage enables the first computationally efficient model-based and model-free algorithms for online (reward-free or reward-driven) reinforcement learning in MDPs with low coverability.
arXiv Detail & Related papers (2024-03-11T10:14:06Z) - Adaptive $Q$-Aid for Conditional Supervised Learning in Offline Reinforcement Learning [20.07425661382103]
$Q$-Aided Conditional Supervised Learning combines stability of RCSL with the stitching capability of $Q$-functions.
QCS adaptively integrates $Q$-aid into RCSL's loss function based on trajectory return.
arXiv Detail & Related papers (2024-02-03T04:17:09Z) - A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning
with General Function Approximation [66.26739783789387]
We propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for reinforcement learning.
MQL-UCB achieves minimax optimal regret of $tildeO(dsqrtHK)$ when $K$ is sufficiently large and near-optimal policy switching cost.
Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
arXiv Detail & Related papers (2023-11-26T08:31:57Z) - Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning [50.9692060692705]
This paper introduces $textbfLanguage Models for $textbfMo$tion Control ($textbfLaMo$), a general framework based on Decision Transformers for offline RL.<n>Our framework highlights four crucial components:.<n>Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method,.<n>In particular, our method demonstrates superior performance in scenarios with limited data samples.
arXiv Detail & Related papers (2023-10-31T16:24:17Z) - Near-Optimal Deployment Efficiency in Reward-Free Reinforcement Learning
with Linear Function Approximation [16.871660060209674]
We study the problem of deployment efficient reinforcement learning (RL) with linear function approximation under the emphreward-free exploration setting.
We propose a new algorithm that collects at most $widetildeO(fracd2H5epsilon2)$ trajectories within $H$ deployments to identify $epsilon$-optimal policy for any (possibly data-dependent) choice of reward functions.
arXiv Detail & Related papers (2022-10-03T03:48:26Z) - Offline Inverse Reinforcement Learning [24.316047317028147]
offline RL is to learn optimal policies when a fixed exploratory demonstrations data-set is available.
Inspired by the success of IRL techniques in achieving state of the art imitation performances in online settings, we exploit GAN based data augmentation procedures to construct the first offline IRL algorithm.
arXiv Detail & Related papers (2021-06-09T13:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.