Action Dependency Graphs for Globally Optimal Coordinated Reinforcement Learning
- URL: http://arxiv.org/abs/2506.00797v1
- Date: Sun, 01 Jun 2025 02:58:20 GMT
- Title: Action Dependency Graphs for Globally Optimal Coordinated Reinforcement Learning
- Authors: Jianglin Ding, Jingcheng Tang, Gangshan Jing,
- Abstract summary: Action-dependent individual policies have emerged as a promising paradigm for achieving global optimality in multi-agent reinforcement learning.<n>In this work, we consider a more generalized class of action-dependent policies, which do not necessarily follow the auto-regressive form.<n>Within the context of MARL problems structured by coordination graphs, we prove that an action-dependent policy with a sparse ADG can achieve global optimality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action-dependent individual policies, which incorporate both environmental states and the actions of other agents in decision-making, have emerged as a promising paradigm for achieving global optimality in multi-agent reinforcement learning (MARL). However, the existing literature often adopts auto-regressive action-dependent policies, where each agent's policy depends on the actions of all preceding agents. This formulation incurs substantial computational complexity as the number of agents increases, thereby limiting scalability. In this work, we consider a more generalized class of action-dependent policies, which do not necessarily follow the auto-regressive form. We propose to use the `action dependency graph (ADG)' to model the inter-agent action dependencies. Within the context of MARL problems structured by coordination graphs, we prove that an action-dependent policy with a sparse ADG can achieve global optimality, provided the ADG satisfies specific conditions specified by the coordination graph. Building on this theoretical foundation, we develop a tabular policy iteration algorithm with guaranteed global optimality. Furthermore, we integrate our framework into several SOTA algorithms and conduct experiments in complex environments. The empirical results affirm the robustness and applicability of our approach in more general scenarios, underscoring its potential for broader MARL challenges.
Related papers
- Offline Multi-agent Reinforcement Learning via Score Decomposition [51.23590397383217]
offline cooperative multi-agent reinforcement learning (MARL) faces unique challenges due to distributional shifts.<n>This work is the first work to explicitly address the distributional gap between offline and online MARL.
arXiv Detail & Related papers (2025-05-09T11:42:31Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Offline Multi-Agent Reinforcement Learning via In-Sample Sequential Policy Optimization [8.877649895977479]
offline Multi-Agent Reinforcement Learning (MARL) is an emerging field that aims to learn optimal multi-agent policies from pre-collected datasets.<n>In this work, we revisit the existing offline MARL methods and show that in certain scenarios they can be problematic.<n>We propose a new offline MARL algorithm, named In-Sample Sequential Policy Optimization (InSPO)
arXiv Detail & Related papers (2024-12-10T16:19:08Z) - Role Play: Learning Adaptive Role-Specific Strategies in Multi-Agent Interactions [8.96091816092671]
We propose a novel framework called emphRole Play (RP)
RP employs role embeddings to transform the challenge of policy diversity into a more manageable diversity of roles.
It trains a common policy with role embedding observations and employs a role predictor to estimate the joint role embeddings of other agents, helping the learning agent adapt to its assigned role.
arXiv Detail & Related papers (2024-11-02T07:25:48Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Personalized Reinforcement Learning with a Budget of Policies [9.846353643883443]
Personalization in machine learning (ML) tailors models' decisions to the individual characteristics of users.
We propose a novel framework termed represented Markov Decision Processes (r-MDPs) that is designed to balance the need for personalization with the regulatory constraints.
In an r-MDP, we cater to a diverse user population, each with unique preferences, through interaction with a small set of representative policies.
We develop two deep reinforcement learning algorithms that efficiently solve r-MDPs.
arXiv Detail & Related papers (2024-01-12T11:27:55Z) - Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning [46.28771270378047]
Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories.
In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment.
We learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner.
arXiv Detail & Related papers (2023-11-01T00:15:18Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Context-Aware Bayesian Network Actor-Critic Methods for Cooperative
Multi-Agent Reinforcement Learning [7.784991832712813]
We introduce a Bayesian network to inaugurate correlations between agents' action selections in their joint policy.
We develop practical algorithms to learn the context-aware Bayesian network policies.
Empirical results on a range of MARL benchmarks show the benefits of our approach.
arXiv Detail & Related papers (2023-06-02T21:22:27Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
Decentralized execution is one core demand in cooperative multi-agent reinforcement learning (MARL)
In this paper, we theoretically analyze two common classes of algorithms with decentralized policies -- multi-agent policy gradient methods and value-decomposition methods.
We show that TAD-PPO can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.
arXiv Detail & Related papers (2022-07-12T06:59:13Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.