Uni-LoRA: One Vector is All You Need
- URL: http://arxiv.org/abs/2506.00799v1
- Date: Sun, 01 Jun 2025 03:00:09 GMT
- Title: Uni-LoRA: One Vector is All You Need
- Authors: Kaiyang Li, Shaobo Han, Qing Su, Wei Li, Zhipeng Cai, Shihao Ji,
- Abstract summary: Low-Rank Adaptation (LoRA) has become the de facto parameter-efficient fine-tuning (PEFT) method for large language models.<n>In this paper, we show that the parameter space reduction strategies employed by these LoRA variants can be formulated within a unified framework.<n>Under the unified view of Uni-LoRA, this design requires only a single trainable vector to reconstruct LoRA parameters for the entire LLM.
- Score: 13.938834666101679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) has become the de facto parameter-efficient fine-tuning (PEFT) method for large language models (LLMs) by constraining weight updates to low-rank matrices. Recent works such as Tied-LoRA, VeRA, and VB-LoRA push efficiency further by introducing additional constraints to reduce the trainable parameter space. In this paper, we show that the parameter space reduction strategies employed by these LoRA variants can be formulated within a unified framework, Uni-LoRA, where the LoRA parameter space, flattened as a high-dimensional vector space $R^D$, can be reconstructed through a projection from a subspace R^d, with $d \ll D$. We demonstrate that the fundamental difference among various LoRA methods lies in the choice of the projection matrix, $P \in R^{D \times d}$.Most existing LoRA variants rely on layer-wise or structure-specific projections that limit cross-layer parameter sharing, thereby compromising parameter efficiency. In light of this, we introduce an efficient and theoretically grounded projection matrix that is isometric, enabling global parameter sharing and reducing computation overhead. Furthermore, under the unified view of Uni-LoRA, this design requires only a single trainable vector to reconstruct LoRA parameters for the entire LLM - making Uni-LoRA both a unified framework and a "one-vector-only" solution. Extensive experiments on GLUE, mathematical reasoning, and instruction tuning benchmarks demonstrate that Uni-LoRA achieves state-of-the-art parameter efficiency while outperforming or matching prior approaches in predictive performance.
Related papers
- QR-LoRA: Efficient and Disentangled Fine-tuning via QR Decomposition for Customized Generation [52.024845354511555]
We propose QR-LoRA, a novel fine-tuning framework leveraging QR decomposition for structured parameter updates.<n>Our key insight is that the Q matrix naturally minimizes interference between different visual features.<n>Experiments demonstrate that QR-LoRA achieves superior disentanglement in content-style fusion tasks.
arXiv Detail & Related papers (2025-07-07T01:31:01Z) - DenseLoRA: Dense Low-Rank Adaptation of Large Language Models [14.133511131962786]
Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs)<n>We introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA.<n>We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B.
arXiv Detail & Related papers (2025-05-27T08:19:07Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.<n>We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.<n>Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.<n>We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaptation over a Flat Loss Landscape [52.98187034726091]
We introduce Flat-LoRA, which aims to identify a low-rank adaptation situated in a flat region of the full parameter space.<n>We show that Flat-LoRA improves both in-domain and out-of-domain generalization.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.<n>Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.<n>We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Unlocking the Global Synergies in Low-Rank Adapters [20.32980343066711]
Low-rank Adaption (LoRA) has been the de-facto parameter-efficient fine-tuning technique for large language models.
We present HeteroLoRA, a light-weight search algorithm that leverages zero-cost proxies to allocate the limited LoRA trainable parameters.
Experiments show that HeteroLoRA enables improvements in model performance given the same parameter budge.
arXiv Detail & Related papers (2024-06-21T08:10:03Z) - LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters [11.23006032094776]
We introduce LoRA-XS, a novel low-rank adaptation method that considerably reduces the trainable parameters while showing superior or competitive performance.
LoRA-XS achieves a remarkable reduction of trainable parameters by over 100x in 7B models compared to LoRA.
arXiv Detail & Related papers (2024-05-27T19:07:13Z) - DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution [28.589498108609202]
Low-Rank Adaptation (LoRA) relies on a bypass framework that ignores the differential parameter budget requirements across weight matrices.
DoRA decomposes high-rank LoRA layers into structured single-rank components, allowing for dynamic pruning of parameter budget.
Experimental results demonstrate that DoRA can achieve competitive performance compared with LoRA and full model fine-tuning.
arXiv Detail & Related papers (2024-05-27T17:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.