Enhancing LLM Reasoning for Time Series Classification by Tailored Thinking and Fused Decision
- URL: http://arxiv.org/abs/2506.00807v1
- Date: Sun, 01 Jun 2025 03:15:54 GMT
- Title: Enhancing LLM Reasoning for Time Series Classification by Tailored Thinking and Fused Decision
- Authors: Jiahui Zhou, Dan Li, Lin Li, Zhuomin Chen, Shunyu Wu, Haozheng Ye, Jian Lou, Costas J. Spanos,
- Abstract summary: ReasonTSC is a framework designed to leverage LLM reasoning for time series classification.<n>It steers the model to think over the essential characteristics of time series data.<n>It integrates predictions and confidence scores from plug-in classifiers, e.g., domain-specific time series models, as in-context examples.
- Score: 8.256998757769322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reasoning capabilities of large language models (LLMs) have significantly advanced their performance by enabling in-depth understanding of diverse tasks. With growing interest in applying LLMs to the time series domain, this has proven nontrivial, as evidenced by the limited efficacy of straightforwardly adapting text-domain reasoning techniques. Although recent work has shown promise in several time series tasks, further leveraging advancements in LLM reasoning remains under-explored for time series classification (TSC) tasks, despite their prevalence and significance in many real-world applications. In this paper, we propose ReasonTSC, a novel framework designed to effectively leverage LLM reasoning for time series classification through both a multi-turn reasoning and a fused decision-making strategy tailored to TSC. Rather than straightforwardly applying existing reasoning techniques or relying solely on LLMs' built-in reasoning capabilities, ReasonTSC first steers the model to think over the essential characteristics of time series data. Next, it integrates predictions and confidence scores from plug-in classifiers, e.g., domain-specific time series models, as in-context examples. Finally, ReasonTSC guides the LLM through a structured reasoning process: it evaluates the initial assessment, backtracks to consider alternative hypotheses, and compares their merits before arriving at a final classification. Extensive experiments and systematic ablation studies demonstrate that ReasonTSC consistently outperforms both existing time series reasoning baselines and plug-in models, and is even capable of identifying and correcting plug-in models' false predictions.
Related papers
- Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs [12.295608604703117]
Time-R1 is a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting.<n>Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability.<n> Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets.
arXiv Detail & Related papers (2025-06-12T12:15:50Z) - Can Slow-thinking LLMs Reason Over Time? Empirical Studies in Time Series Forecasting [17.73769436497384]
Time series forecasting (TSF) is a fundamental and widely studied task, spanning methods from classical statistical approaches to modern deep learning and multimodal language modeling.<n>Meanwhile, emerging slow-thinking LLMs have demonstrated impressive multi-step reasoning capabilities across diverse domains.<n>This motivates a key question: can slow-thinking LLMs effectively reason over temporal patterns to support time series forecasting, even in zero-shot manner?
arXiv Detail & Related papers (2025-05-30T12:19:02Z) - Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models [21.579319926212296]
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks.<n>They struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships.<n>We introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection.
arXiv Detail & Related papers (2025-04-07T16:51:45Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXL is a multi-modal prediction framework that integrates a prototype-based time series encoder.<n>It produces more accurate predictions and interpretable explanations.<n> Empirical evaluations on four real-world datasets demonstrate that TimeXL achieves up to 8.9% improvement in AUC.
arXiv Detail & Related papers (2025-03-02T20:40:53Z) - SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks.<n>We propose a novel approach for continuous-space reasoning that does not require modifying the LLM.
arXiv Detail & Related papers (2025-02-17T18:52:29Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
We argue that multimodal language models (MLLMs) can enable more powerful and flexible reasoning for time series analysis.<n>We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs.
arXiv Detail & Related papers (2025-02-03T16:10:48Z) - Fine-Tuning on Diverse Reasoning Chains Drives Within-Inference CoT Refinement in LLMs [63.36637269634553]
We introduce a novel approach where LLMs are fine-tuned to generate a sequence of Diverse Chains of Thought (DCoT) within a single inference step.<n>We show that fine-tuning on DCoT improves performance over the CoT baseline across model families and scales.<n>Our work is also significant because both quantitative analyses and manual evaluations reveal the observed gains stem from the models' ability to refine an initial reasoning chain.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.<n>To reduce the distribution discrepancy, we develop the cross-modal match module.<n>CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - Empowering Time Series Analysis with Large Language Models: A Survey [24.202539098675953]
We provide a systematic overview of methods that leverage large language models for time series analysis.
Specifically, we first state the challenges and motivations of applying language models in the context of time series.
Next, we categorize existing methods into different groups (i.e., direct query, tokenization, prompt design, fine-tune, and model integration) and highlight the key ideas within each group.
arXiv Detail & Related papers (2024-02-05T16:46:35Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
We propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy.
First, we categorize known conditions into two types: determinate and indeterminate premises This provides an oveall direction for the reasoning process and guides LLMs in converting indeterminate data into progressively determinate insights.
We automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps.
arXiv Detail & Related papers (2023-10-28T10:05:51Z) - TRAM: Benchmarking Temporal Reasoning for Large Language Models [12.112914393948415]
We introduce TRAM, a temporal reasoning benchmark composed of ten datasets.
We evaluate popular language models like GPT-4 and Llama2 in zero-shot and few-shot scenarios.
Our findings indicate that the best-performing model lags significantly behind human performance.
arXiv Detail & Related papers (2023-10-02T00:59:07Z) - Reason for Future, Act for Now: A Principled Framework for Autonomous
LLM Agents with Provable Sample Efficiency [53.8779374188643]
We propose a principled framework with provable regret guarantees to orchestrate reasoning and acting.
Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon.
At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state.
arXiv Detail & Related papers (2023-09-29T16:36:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.