FourierFlow: Frequency-aware Flow Matching for Generative Turbulence Modeling
- URL: http://arxiv.org/abs/2506.00862v1
- Date: Sun, 01 Jun 2025 06:59:27 GMT
- Title: FourierFlow: Frequency-aware Flow Matching for Generative Turbulence Modeling
- Authors: Haixin Wang, Jiashu Pan, Hao Wu, Fan Zhang, Tailin Wu,
- Abstract summary: We propose a novel generative turbulence modeling framework that enhances the frequency-aware learning by implicitly and explicitly mitigating spectral bias and common-mode noise.<n>FourierFlow comprises three key innovations. Firstly, we adopt a dual-branch backbone architecture, consisting of a salient flow attention branch with local-global awareness to focus on sensitive turbulence areas.<n>Thirdly, we leverage the high-frequency modeling capabilities of the masked auto-encoder pre-training and implicitly align the features of the generative model toward high-frequency components.
- Score: 10.73187148812722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling complex fluid systems, especially turbulence governed by partial differential equations (PDEs), remains a fundamental challenge in science and engineering. Recently, diffusion-based generative models have gained attention as a powerful approach for these tasks, owing to their capacity to capture long-range dependencies and recover hierarchical structures. However, we present both empirical and theoretical evidence showing that generative models struggle with significant spectral bias and common-mode noise when generating high-fidelity turbulent flows. Here we propose FourierFlow, a novel generative turbulence modeling framework that enhances the frequency-aware learning by both implicitly and explicitly mitigating spectral bias and common-mode noise. FourierFlow comprises three key innovations. Firstly, we adopt a dual-branch backbone architecture, consisting of a salient flow attention branch with local-global awareness to focus on sensitive turbulence areas. Secondly, we introduce a frequency-guided Fourier mixing branch, which is integrated via an adaptive fusion strategy to explicitly mitigate spectral bias in the generative model. Thirdly, we leverage the high-frequency modeling capabilities of the masked auto-encoder pre-training and implicitly align the features of the generative model toward high-frequency components. We validate the effectiveness of FourierFlow on three canonical turbulent flow scenarios, demonstrating superior performance compared to state-of-the-art methods. Furthermore, we show that our model exhibits strong generalization capabilities in challenging settings such as out-of-distribution domains, long-term temporal extrapolation, and robustness to noisy inputs. The code can be found at https://github.com/AI4Science-WestlakeU/FourierFlow.
Related papers
- FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
We propose textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequential textbfRecommendation)<n>A Stein kernel-based Integrated Information Coordination Module (IICM) theoretically guarantees distribution consistency between multimodal features and ID streams.<n>A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance.
arXiv Detail & Related papers (2025-07-07T04:09:45Z) - Improving Progressive Generation with Decomposable Flow Matching [50.63174319509629]
Decomposable Flow Matching (DFM) is a simple and effective framework for the progressive generation of visual media.<n>On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline.
arXiv Detail & Related papers (2025-06-24T17:58:02Z) - FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation [14.903360987684483]
We propose FEAT, a full-dimensional efficient attention Transformer for high-quality dynamic medical videos.<n>We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance.
arXiv Detail & Related papers (2025-06-05T12:31:02Z) - FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems [51.15230303652732]
FLEX (F Low EXpert) is a backbone architecture for generative modeling of-temporal physical systems.<n>It reduces the variance of the velocity field in the diffusion model, which helps stabilize training.<n>It achieves accurate predictions for super-resolution and forecasting tasks using as few features as two reverse diffusion steps.
arXiv Detail & Related papers (2025-05-23T00:07:59Z) - Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions [94.21989689001848]
We propose (Delta)ConvFusion to replace conventional self-attention modules with Pyramid Convolution Blocks ((Delta)ConvBlocks)<n>By distilling attention patterns into localized convolutional operations while keeping other components frozen, (Delta)ConvFusion achieves performance comparable to transformer-based counterparts while reducing computational cost by 6929$times$ and surpassing LinFusion by 5.42$times$ in efficiency--all without compromising generative fidelity.
arXiv Detail & Related papers (2025-04-30T03:57:28Z) - LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
High-frequency information is a critical challenge in machine learning.<n>Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.<n>We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
arXiv Detail & Related papers (2025-04-05T19:35:04Z) - SPECTRE: An FFT-Based Efficient Drop-In Replacement to Self-Attention for Long Contexts [2.200751835496112]
Long-context transformers face significant efficiency challenges due to the quadratic cost of self-attention.<n>We introduce SPECTRE, a method that replaces each attention head with a fast real FFT.<n>We extend this efficiency to autoregressive generation through our Prefix-FFT cache and enhance local feature representation with an optional wavelet module.
arXiv Detail & Related papers (2025-02-25T17:43:43Z) - F3-Pruning: A Training-Free and Generalized Pruning Strategy towards
Faster and Finer Text-to-Video Synthesis [94.10861578387443]
We explore the inference process of two mainstream T2V models using transformers and diffusion models.
We propose a training-free and generalized pruning strategy called F3-Pruning to prune redundant temporal attention weights.
Extensive experiments on three datasets using a classic transformer-based model CogVideo and a typical diffusion-based model Tune-A-Video verify the effectiveness of F3-Pruning.
arXiv Detail & Related papers (2023-12-06T12:34:47Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Dynamics of Fourier Modes in Torus Generative Adversarial Networks [0.8189696720657245]
Generative Adversarial Networks (GANs) are powerful Machine Learning models capable of generating fully synthetic samples of a desired phenomenon with a high resolution.
Despite their success, the training process of a GAN is highly unstable and typically it is necessary to implement several accessory perturbations to the networks to reach an acceptable convergence of the model.
We introduce a novel method to analyze the convergence and stability in the training of Generative Adversarial Networks.
arXiv Detail & Related papers (2022-09-05T09:03:22Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - Generative Modeling of Turbulence [0.7646713951724012]
We present a mathematically well founded approach for the synthetic modeling of turbulent flows using generative adversarial networks (GAN)
GAN are efficient in simulating turbulence in technically challenging flow problems on the basis of a moderate amount of training date.
arXiv Detail & Related papers (2021-12-05T11:39:14Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.