Work Extraction from Classically Correlated States in Noisy Quantum Channels with Memory
- URL: http://arxiv.org/abs/2506.00905v1
- Date: Sun, 01 Jun 2025 08:45:52 GMT
- Title: Work Extraction from Classically Correlated States in Noisy Quantum Channels with Memory
- Authors: Maryam Hadipour, Soroush Haseli,
- Abstract summary: We show that amplitude damping channels can induce quantum correlations that enable additional extractable work.<n>Our results reveal that non-unital noise can serve not as a limitation but as a valuable thermodynamic resource in quantum protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the potential of local non-unital noise and quantum channel memory to enhance work extraction from classically correlated quantum states. Utilizing the framework of daemonic ergotropy, which incorporates measurement-based feedback via an ancillary system, we show that amplitude damping channels can induce quantum correlations that enable additional extractable work. Through analytical derivations and numerical simulations, we quantify the daemonic gain and demonstrate that channel memory significantly amplifies this advantage by preserving system-ancilla correlations. Our results reveal that non-unital noise can serve not as a limitation but as a valuable thermodynamic resource in quantum protocols.
Related papers
- Excitation Amplitude Sampling for Low Variance Electronic Structure on Quantum Computers [0.0]
We combine classicalenergetics with partial shadow tomography to enable efficient protocols for extracting information from correlated ab initio electronic systems encoded on quantum devices.<n>We can demonstrate an almost two order of magnitude of reduction in required number of shots for a given quantum state excitation amplitudes.<n>We find a high-degree of noise resilience of these estimators on real quantum devices, with up to an order of magnitude increase in the tolerated noise compared to traditional techniques.
arXiv Detail & Related papers (2025-06-18T13:13:09Z) - Quantum tunneling and anti-tunneling across entropic barriers [44.99833362998488]
We study the dynamics of a quantum particle in a constricted two-dimensional channel.<n>We analyze how the onset of quantum corrections impacts the (semi-intuitive) high-temperature behaviour, as temperature is lowered.
arXiv Detail & Related papers (2025-05-06T19:55:55Z) - Improved amplitude amplification strategies for the quantum simulation of classical transport problems [41.94295877935867]
We show that oblivious amplitude amplification when applied to non-unitary dynamics leads to a distortion of the quantum state and to an accompanying error in the quantum update.<n>We also propose an amplification strategy that helps mitigate the distortion error, while still securing an enhanced success probability.
arXiv Detail & Related papers (2025-02-25T15:17:03Z) - Role of coherence in many-body Quantum Reservoir Computing [3.4078654008228924]
We show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks.
We critically assess the impact of finite measurement resources and noise on the reservoir's dynamics in different regimes.
arXiv Detail & Related papers (2024-09-26T11:06:08Z) - Enhancing One-Way Steering and Non-Classical Correlations in Magnomechanics via Coherent Feedback [0.0]
coherent feedback is used to enhance quantum correlations in a cavity magnonmechanical system.
Results show that adjusting the beam splitter's reflective parameter can significantly enhance quantum correlations.
We conclude by validating the system and demonstrating its ability to detect entanglement.
arXiv Detail & Related papers (2024-09-21T13:30:39Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Quantum simulation of dynamical phase transitions in noisy quantum
devices [0.0]
Zero-noise extrapolation provides an especially useful error mitigation method for noisy quantum devices.
Noise alters the behavior of the Loschmidt echo at the dynamical phase transition times.
Zero-noise extrapolation may be employed to recover quantum revivals of the Loschmidt echo.
arXiv Detail & Related papers (2022-11-15T17:22:20Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.