論文の概要: ProtInvTree: Deliberate Protein Inverse Folding with Reward-guided Tree Search
- arxiv url: http://arxiv.org/abs/2506.00925v1
- Date: Sun, 01 Jun 2025 09:34:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.794394
- Title: ProtInvTree: Deliberate Protein Inverse Folding with Reward-guided Tree Search
- Title(参考訳): ProtInvTree:Reward-guided Tree Searchによるタンパク質逆フォールディングの検討
- Authors: Mengdi Liu, Xiaoxue Cheng, Zhangyang Gao, Hong Chang, Cheng Tan, Shiguang Shan, Xilin Chen,
- Abstract要約: ProtInvTreeはタンパク質逆フォールディングのための報酬誘導ツリー検索フレームワークである。
シークエンス生成は、意図的に、ステップワイズな意思決定プロセスとして再構成される。
検索深度と幅を広げて、再トレーニングすることなく、フレキシブルなテストタイムスケーリングをサポートする。
- 参考スコア(独自算出の注目度): 77.55575655986252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing protein sequences that fold into a target 3D structure, known as protein inverse folding, is a fundamental challenge in protein engineering. While recent deep learning methods have achieved impressive performance by recovering native sequences, they often overlook the one-to-many nature of the problem: multiple diverse sequences can fold into the same structure. This motivates the need for a generative model capable of designing diverse sequences while preserving structural consistency. To address this trade-off, we introduce ProtInvTree, the first reward-guided tree-search framework for protein inverse folding. ProtInvTree reformulates sequence generation as a deliberate, step-wise decision-making process, enabling the exploration of multiple design paths and exploitation of promising candidates through self-evaluation, lookahead, and backtracking. We propose a two-stage focus-and-grounding action mechanism that decouples position selection and residue generation. To efficiently evaluate intermediate states, we introduce a jumpy denoising strategy that avoids full rollouts. Built upon pretrained protein language models, ProtInvTree supports flexible test-time scaling by expanding the search depth and breadth without retraining. Empirically, ProtInvTree outperforms state-of-the-art baselines across multiple benchmarks, generating structurally consistent yet diverse sequences, including those far from the native ground truth.
- Abstract(参考訳): タンパク質逆フォールディングとして知られる、標的となる3D構造に折り畳まれたタンパク質配列を設計することは、タンパク質工学における根本的な課題である。
最近のディープラーニング手法は、ネイティブシーケンスを復元することで、目覚ましいパフォーマンスを達成したが、多くの多様なシーケンスが同じ構造に折り畳まれるという、問題の1対多の性質を見落としていることが多い。
これは、構造的な一貫性を維持しながら多様なシーケンスを設計できる生成モデルの必要性を動機付けている。
このトレードオフに対処するために、タンパク質逆フォールディングのための最初の報酬誘導木探索フレームワークであるProtInvTreeを紹介する。
ProtInvTreeは、シークエンス生成を意図的に段階的な意思決定プロセスとして再構成し、複数の設計パスの探索と、自己評価、ルックアヘッド、バックトラックを通じて有望な候補の活用を可能にする。
位置選択と残余生成を分離する2段階のフォーカス・アンド・グラウンド動作機構を提案する。
中間状態を効率よく評価するために,全ロールアウトを回避するジャンピーデノナイジング戦略を導入する。
ProtInvTreeは、事前トレーニングされたタンパク質言語モデルに基づいて、検索深度と幅を広げて、再トレーニングせずにフレキシブルなテストタイムスケーリングをサポートする。
ProtInvTreeは、複数のベンチマークで最先端のベースラインを上回り、構造的に一貫性がありながら多様なシーケンスを生成します。
関連論文リスト
- FoldToken: Learning Protein Language via Vector Quantization and Beyond [56.19308144551836]
タンパク質配列構造を離散シンボルとして表現するために textbfFoldTokenizer を導入する。
学習したシンボルを textbfFoldToken と呼び、FoldToken の配列が新しいタンパク質言語として機能する。
論文 参考訳(メタデータ) (2024-02-04T12:18:51Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
細かな視覚分類のための新しいアプローチであるViTreeを紹介する。
ツリーパスをトラバースすることで、ViTreeは変換処理された機能からパッチを効果的に選択し、情報のあるローカルリージョンをハイライトする。
このパッチとパスの選択性は、ViTreeのモデルの解釈可能性を高め、モデルの内部動作に関するより良い洞察を可能にする。
論文 参考訳(メタデータ) (2024-01-30T14:32:25Z) - Tree Search-Based Evolutionary Bandits for Protein Sequence Optimization [44.356888079704156]
タンパク質工学は、任意のタンパク質の広大な配列空間のため、大変な作業である。
タンパク質工学は通常、野生型または鉛配列に突然変異を加える反復的なプロセスによって行われる。
本稿では,木探索に基づくバンド学習手法を提案する。この手法は,初期シーケンスから始まる木を,バンド学習モデルのガイダンスで拡張する。
論文 参考訳(メタデータ) (2024-01-08T06:33:27Z) - The tree reconstruction game: phylogenetic reconstruction using
reinforcement learning [30.114112337828875]
本研究では,系統樹の再構築に挑戦する強化学習アルゴリズムを提案する。
本研究では,強化学習を用いて最適な探索戦略を学習できることを実証する。
以上の結果から, 推定された系統の確率スコアは, 広く使われているソフトウェアと類似していることが示唆された。
論文 参考訳(メタデータ) (2023-03-12T16:19:06Z) - RLET: A Reinforcement Learning Based Approach for Explainable QA with
Entailment Trees [47.745218107037786]
本稿では,強化学習に基づくEntailment Tree生成フレームワークであるRLETを提案する。
RLETは文の選択と推論生成モジュールによる単一ステップ推論を反復的に行う。
EntailmentBankデータセットの3つの設定の実験では、RLフレームワークを使用することの強みが示されている。
論文 参考訳(メタデータ) (2022-10-31T06:45:05Z) - AlphaFold Distillation for Protein Design [25.190210443632825]
逆タンパク質の折りたたみはバイオエンジニアリングと薬物発見に不可欠である。
AlphaFoldのような前方の折りたたみモデルは、シーケンスから構造を正確に予測することで潜在的な解決策を提供する。
本稿では, 折り畳みモデルの信頼性測定値に対する知識蒸留を用いて, より高速かつエンドツーエンドの識別可能な蒸留モデルを作成することを提案する。
論文 参考訳(メタデータ) (2022-10-05T19:43:06Z) - Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model
for Protein Design [70.27706384570723]
Fold2Seqは特定の標的に条件付きタンパク質配列を設計するための新しいフレームワークである。
Fold2Seqの性能は, シーケンス設計の速度, カバレッジ, 信頼性において向上したか, 同等であったかを示す。
フォールドベースのFold2Seqの独特な利点は、構造ベースのディープモデルやRosettaDesignと比較して、3つの現実世界の課題においてより明確になる。
論文 参考訳(メタデータ) (2021-06-24T14:34:24Z) - Rethinking Learnable Tree Filter for Generic Feature Transform [71.77463476808585]
Learnable Tree Filterはセマンティックセグメンテーションのためのモデル構造保存関係に対する顕著なアプローチを示す。
幾何学的制約を緩和するために,マルコフ確率場として再構成して解析を行い,学習可能な不定項を導入する。
セマンティックセグメンテーションでは、ベルとホイッスルなしでCityscapesベンチマークでトップパフォーマンス(82.1% mIoU)を達成しています。
論文 参考訳(メタデータ) (2020-12-07T07:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。