Spatio-Temporal Decoupled Learning for Spiking Neural Networks
- URL: http://arxiv.org/abs/2506.01117v1
- Date: Sun, 01 Jun 2025 18:46:36 GMT
- Title: Spatio-Temporal Decoupled Learning for Spiking Neural Networks
- Authors: Chenxiang Ma, Xinyi Chen, Kay Chen Tan, Jibin Wu,
- Abstract summary: Spiking artificial neural networks (SNNs) have gained significant attention for their potential to enable energy-efficient intelligence.<n>While backpropagation through time (BPTT) achieves high accuracy, it incurs substantial memory overhead.<n>We propose a novel training framework that decouples the spatial and temporal dependencies to achieve both high accuracy and training efficiency for SNNs.
- Score: 23.720523101102593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have gained significant attention for their potential to enable energy-efficient artificial intelligence. However, effective and efficient training of SNNs remains an unresolved challenge. While backpropagation through time (BPTT) achieves high accuracy, it incurs substantial memory overhead. In contrast, biologically plausible local learning methods are more memory-efficient but struggle to match the accuracy of BPTT. To bridge this gap, we propose spatio-temporal decouple learning (STDL), a novel training framework that decouples the spatial and temporal dependencies to achieve both high accuracy and training efficiency for SNNs. Specifically, to achieve spatial decoupling, STDL partitions the network into smaller subnetworks, each of which is trained independently using an auxiliary network. To address the decreased synergy among subnetworks resulting from spatial decoupling, STDL constructs each subnetwork's auxiliary network by selecting the largest subset of layers from its subsequent network layers under a memory constraint. Furthermore, STDL decouples dependencies across time steps to enable efficient online learning. Extensive evaluations on seven static and event-based vision datasets demonstrate that STDL consistently outperforms local learning methods and achieves comparable accuracy to the BPTT method with considerably reduced GPU memory cost. Notably, STDL achieves 4x reduced GPU memory than BPTT on the ImageNet dataset. Therefore, this work opens up a promising avenue for memory-efficient SNN training. Code is available at https://github.com/ChenxiangMA/STDL.
Related papers
- TESS: A Scalable Temporally and Spatially Local Learning Rule for Spiking Neural Networks [6.805933498669221]
Training neural networks (SNNs) on resource-constrained devices remains challenging due to high computational and memory demands.<n>We introduce TESS, a temporally and spatially local learning rule for training SNNs.<n>Our approach addresses both temporal and spatial credit assignments by relying solely on locally available signals within each neuron.
arXiv Detail & Related papers (2025-02-03T21:23:15Z) - Optimal Gradient Checkpointing for Sparse and Recurrent Architectures using Off-Chip Memory [0.8321953606016751]
We introduce memory-efficient gradient checkpointing strategies tailored for the general class of sparse RNNs and Spiking Neural Networks.<n>We find that Double Checkpointing emerges as the most effective method, optimizing the use of local memory resources while minimizing recomputation overhead.
arXiv Detail & Related papers (2024-12-16T14:23:31Z) - Deep Unsupervised Learning Using Spike-Timing-Dependent Plasticity [1.9424510684232212]
Spike-Timing-Dependent Plasticity (STDP) is an unsupervised learning mechanism for Spiking Neural Networks (SNNs)
In this work, we investigate a Deep-STDP framework where a rate-based convolutional network is trained in tandem with pseudo-labels generated by the STDP clustering process on the network outputs.
We achieve $24.56%$ higher accuracy and $3.5times$ faster convergence speed at iso-accuracy on a 10-class subset of the Tiny ImageNet dataset.
arXiv Detail & Related papers (2023-07-08T22:21:23Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
arXiv Detail & Related papers (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Online Spatio-Temporal Learning in Deep Neural Networks [1.6624384368855523]
Online learning has recently regained the attention of the research community, focusing on approaches that approximate BPTT or on biologically-plausible schemes applied to SNNs.
Here we present an alternative perspective that is based on a clear separation of spatial and temporal gradient components.
We derive from first principles a novel online learning algorithm for deep SNNs, called online spiking-temporal learning (OSTL)
For shallow networks, OSTL is gradient-equivalent to BPTT enabling for the first time online training of SNNs with BPTT-equivalent gradients. In addition, the proposed formulation unveils a class of SNN architectures
arXiv Detail & Related papers (2020-07-24T18:10:18Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.