Revolutionizing Radiology Workflow with Factual and Efficient CXR Report Generation
- URL: http://arxiv.org/abs/2506.01118v1
- Date: Sun, 01 Jun 2025 18:47:49 GMT
- Title: Revolutionizing Radiology Workflow with Factual and Efficient CXR Report Generation
- Authors: Pimchanok Sukjai, Apiradee Boonmee,
- Abstract summary: This paper introduces CXR-PathFinder, a novel Large Language Model (LLM)-centric foundation model specifically engineered for automated chest X-ray (CXR) report generation.<n>We propose a unique training paradigm, Clinician-Guided Adrial Fine-Tuning (CGAFT), which meticulously integrates expert clinical feedback into an adversarial learning framework.<n>Our experiments demonstrate that CXR-PathFinder significantly outperforms existing state-of-the-art medical vision-language models across various quantitative metrics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The escalating demand for medical image interpretation underscores the critical need for advanced artificial intelligence solutions to enhance the efficiency and accuracy of radiological diagnoses. This paper introduces CXR-PathFinder, a novel Large Language Model (LLM)-centric foundation model specifically engineered for automated chest X-ray (CXR) report generation. We propose a unique training paradigm, Clinician-Guided Adversarial Fine-Tuning (CGAFT), which meticulously integrates expert clinical feedback into an adversarial learning framework to mitigate factual inconsistencies and improve diagnostic precision. Complementing this, our Knowledge Graph Augmentation Module (KGAM) acts as an inference-time safeguard, dynamically verifying generated medical statements against authoritative knowledge bases to minimize hallucinations and ensure standardized terminology. Leveraging a comprehensive dataset of millions of paired CXR images and expert reports, our experiments demonstrate that CXR-PathFinder significantly outperforms existing state-of-the-art medical vision-language models across various quantitative metrics, including clinical accuracy (Macro F1 (14): 46.5, Micro F1 (14): 59.5). Furthermore, blinded human evaluation by board-certified radiologists confirms CXR-PathFinder's superior clinical utility, completeness, and accuracy, establishing its potential as a reliable and efficient aid for radiological practice. The developed method effectively balances high diagnostic fidelity with computational efficiency, providing a robust solution for automated medical report generation.
Related papers
- CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings [1.515687944002438]
We propose CLARIFID, a novel framework that directly optimize diagnostic correctness by mirroring the two-step workflow of experts.<n> CLARIFID learns the logical flow from Findings to Impression through section-aware pretraining.<n>We show that our method achieves superior clinical efficacy and outperforms existing baselines on both standard NLG metrics and clinically aware scores.
arXiv Detail & Related papers (2025-07-23T05:57:59Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - DALL-M: Context-Aware Clinical Data Augmentation with LLMs [13.827368628263997]
We introduce DALL-M, a framework that enhances clinical datasets by generating contextual synthetic data.<n>It integrates structured patient data with contextual knowledge extracted from radiology reports and domain-specific resources.<n>Using large language models (LLMs), it generates both contextual synthetic values for existing clinical features and entirely new, clinically relevant features.
arXiv Detail & Related papers (2024-07-11T07:01:50Z) - The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It [12.61239008314719]
This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation.<n>Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as vital signs, medicines, and clinical history to enhance diagnostic accuracy.
arXiv Detail & Related papers (2024-06-19T03:25:31Z) - CopilotCAD: Empowering Radiologists with Report Completion Models and Quantitative Evidence from Medical Image Foundation Models [3.8940162151291804]
This study introduces an innovative paradigm to create an assistive co-pilot system for empowering radiologists.
We develop a collaborative framework to integrate Large Language Models (LLMs) and medical image analysis tools.
arXiv Detail & Related papers (2024-04-11T01:33:45Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists.
This paper introduces a novel RRG method, textbfLM-RRG, that integrates large models (LMs) with clinical quality reinforcement learning.
Experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art.
arXiv Detail & Related papers (2024-03-11T13:47:11Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.