CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings
- URL: http://arxiv.org/abs/2507.17234v2
- Date: Tue, 05 Aug 2025 04:52:49 GMT
- Title: CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings
- Authors: Kyeongkyu Lee, Seonghwan Yoon, Hongki Lim,
- Abstract summary: We propose CLARIFID, a novel framework that directly optimize diagnostic correctness by mirroring the two-step workflow of experts.<n> CLARIFID learns the logical flow from Findings to Impression through section-aware pretraining.<n>We show that our method achieves superior clinical efficacy and outperforms existing baselines on both standard NLG metrics and clinically aware scores.
- Score: 1.515687944002438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic generation of radiology reports has the potential to alleviate radiologists' significant workload, yet current methods struggle to deliver clinically reliable conclusions. In particular, most prior approaches focus on producing fluent text without effectively ensuring the factual correctness of the reports and often rely on single-view images, limiting diagnostic comprehensiveness. We propose CLARIFID, a novel framework that directly optimizes diagnostic correctness by mirroring the two-step workflow of experts. Specifically, CLARIFID (1) learns the logical flow from Findings to Impression through section-aware pretraining, (2) is fine-tuned with Proximal Policy Optimization in which the CheXbert F1 score of the Impression section serves as the reward, (3) enforces reasoning-aware decoding that completes "Findings" before synthesizing the "Impression", and (4) fuses multiple chest X-ray views via a vision-transformer-based multi-view encoder. During inference, we apply a reasoning-aware next-token forcing strategy followed by report-level re-ranking, ensuring that the model first produces a comprehensive Findings section before synthesizing the Impression and thereby preserving coherent clinical reasoning. Experimental results on the MIMIC-CXR dataset demonstrate that our method achieves superior clinical efficacy and outperforms existing baselines on both standard NLG metrics and clinically aware scores.
Related papers
- PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation [12.860257420677122]
PriorRG is a chest X-ray report generation framework that emulates real-world clinical via a two-stage training pipeline.<n>In Stage 1, we introduce a prior-guided contrast pre-training scheme that leverages clinical context guidetemporal feature extraction.<n>In Stage 2, we integrate a prior-aware coarsetemporal decoding for generation that enhances prior knowledge with the vision encoders hidden states.
arXiv Detail & Related papers (2025-08-07T13:02:20Z) - CX-Mind: A Pioneering Multimodal Large Language Model for Interleaved Reasoning in Chest X-ray via Curriculum-Guided Reinforcement Learning [28.737391224748798]
We propose CX-Mind, the first generative model to achieve interleaved "think-answer" reasoning for chest X-ray (CXR) tasks.<n> CX-Mind is driven by curriculum reinforcement learning and verifiable process rewards (RL-VPR)<n>Experiments demonstrate that CX-Mind significantly outperforms existing medical and generaldomain MLLMs in visual understanding, text generation, and alignment.
arXiv Detail & Related papers (2025-07-31T05:07:18Z) - Refine Medical Diagnosis Using Generation Augmented Retrieval and Clinical Practice Guidelines [16.56254046507092]
We introduce GARMLE-G, a Generation-Augmented Retrieval framework that grounds medical language model outputs in authoritative guidelines.<n>Unlike conventional Retrieval-Augmented Generation based approaches, GARMLE-G enables hallucination-free outputs by directly retrieving authoritative guideline content.<n>A prototype system for hypertension diagnosis was developed and evaluated on multiple metrics, demonstrating superior retrieval precision, semantic relevance, and clinical guideline adherence.
arXiv Detail & Related papers (2025-06-22T11:31:13Z) - Revolutionizing Radiology Workflow with Factual and Efficient CXR Report Generation [0.0]
This paper introduces CXR-PathFinder, a novel Large Language Model (LLM)-centric foundation model specifically engineered for automated chest X-ray (CXR) report generation.<n>We propose a unique training paradigm, Clinician-Guided Adrial Fine-Tuning (CGAFT), which meticulously integrates expert clinical feedback into an adversarial learning framework.<n>Our experiments demonstrate that CXR-PathFinder significantly outperforms existing state-of-the-art medical vision-language models across various quantitative metrics.
arXiv Detail & Related papers (2025-06-01T18:47:49Z) - ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification [57.22053411719822]
ChestX-Reasoner is a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports.<n>Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards.
arXiv Detail & Related papers (2025-04-29T16:48:23Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.6355783973385114]
Multi-view perception knowledge-enhanced TansfoRmer (MvKeTR)<n>MVPA with view-aware attention is proposed to synthesize diagnostic information from multiple anatomical views effectively.<n>Cross-Modal Knowledge Enhancer (CMKE) is devised to retrieve the most similar reports based on the query volume.
arXiv Detail & Related papers (2024-11-27T12:58:23Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding [72.18719355481052]
We introduce a novel task called Medical Report Grounding (MRG)<n>MRG aims to directly identify diagnostic phrases and their corresponding grounding boxes from medical reports in an end-to-end manner.<n>We propose uMedGround, a robust and reliable framework that leverages a multimodal large language model to predict diagnostic phrases.
arXiv Detail & Related papers (2024-04-10T07:41:35Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Improving the Factual Accuracy of Abstractive Clinical Text
Summarization using Multi-Objective Optimization [3.977582258550673]
We propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization.
In this study, we propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization.
arXiv Detail & Related papers (2022-04-02T07:59:28Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
arXiv Detail & Related papers (2021-09-25T00:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.