FORT: Forward-Only Regression Training of Normalizing Flows
- URL: http://arxiv.org/abs/2506.01158v1
- Date: Sun, 01 Jun 2025 20:32:27 GMT
- Title: FORT: Forward-Only Regression Training of Normalizing Flows
- Authors: Danyal Rehman, Oscar Davis, Jiarui Lu, Jian Tang, Michael Bronstein, Yoshua Bengio, Alexander Tong, Avishek Joey Bose,
- Abstract summary: We revisit classical normalizing flows as one-step generative models with exact likelihoods.<n>We propose a novel, scalable training objective that does not require computing the expensive change of variable formula used in conventional maximum likelihood training.
- Score: 85.66894616735752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-free training frameworks have been at the forefront of the generative modelling revolution in continuous spaces, leading to neural dynamical systems that encompass modern large-scale diffusion and flow matching models. Despite the scalability of training, the generation of high-quality samples and their corresponding likelihood under the model requires expensive numerical simulation -- inhibiting adoption in numerous scientific applications such as equilibrium sampling of molecular systems. In this paper, we revisit classical normalizing flows as one-step generative models with exact likelihoods and propose a novel, scalable training objective that does not require computing the expensive change of variable formula used in conventional maximum likelihood training. We propose Forward-Only Regression Training (FORT), a simple $\ell_2$-regression objective that maps prior samples under our flow to specifically chosen targets. We demonstrate that FORT supports a wide class of targets, such as optimal transport targets and targets from pre-trained continuous-time normalizing flows (CNF). We further demonstrate that by using CNF targets, our one-step flows allow for larger-scale training that exceeds the performance and stability of maximum likelihood training, while unlocking a broader class of architectures that were previously challenging to train. Empirically, we elucidate that our trained flows can perform equilibrium conformation sampling in Cartesian coordinates of alanine dipeptide, alanine tripeptide, and alanine tetrapeptide.
Related papers
- On-the-Fly Fine-Tuning of Foundational Neural Network Potentials: A Bayesian Neural Network Approach [2.0700747055024284]
Fine-tuning foundation models can reduce the amount of training data necessary to reach a desired level of accuracy.<n>A key challenge for applying this form of active learning to the fine-tuning of foundation models is how to assess the uncertainty of those models during the fine-tuning process.
arXiv Detail & Related papers (2025-07-18T10:33:06Z) - Action-Minimization Meets Generative Modeling: Efficient Transition Path Sampling with the Onsager-Machlup Functional [2.010573982216398]
Current machine learning approaches use expensive, task-specific, and data-free training procedures.<n>We demonstrate our approach on varied molecular systems, obtaining diverse, physically realistic transition pathways.<n>Our method can be easily incorporated into new generative models, making it practically relevant as models continue to scale.
arXiv Detail & Related papers (2025-04-25T17:17:17Z) - TFG-Flow: Training-free Guidance in Multimodal Generative Flow [73.93071065307782]
We introduce TFG-Flow, a training-free guidance method for multimodal generative flow.<n>TFG-Flow addresses the curse-of-dimensionality while maintaining the property of unbiased sampling in guiding discrete variables.<n>We show that TFG-Flow has great potential in drug design by generating molecules with desired properties.
arXiv Detail & Related papers (2025-01-24T03:44:16Z) - Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)<n>After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.<n>We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Free-form Flows: Make Any Architecture a Normalizing Flow [8.163244519983298]
We develop a training procedure that uses an efficient estimator for the gradient of the change of variables formula.
This enables any dimension-preserving neural network to serve as a generative model through maximum likelihood training.
We achieve excellent results in molecule generation benchmarks utilizing $E(n)$-equivariant networks.
arXiv Detail & Related papers (2023-10-25T13:23:08Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
We introduce FoldFlow, a series of novel generative models of increasing modeling power based on the flow-matching paradigm over $3mathrmD$ rigid motions.
Our family of FoldFlowgenerative models offers several advantages over previous approaches to the generative modeling of proteins.
arXiv Detail & Related papers (2023-10-03T19:24:24Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Embedded training of neural-network sub-grid-scale turbulence models [0.0]
The weights of a deep neural network model are optimized in conjunction with the governing flow equations to provide a model for sub-grid-scale stresses.
The training is by a gradient descent method, which uses the adjoint Navier-Stokes equations to provide the end-to-end sensitivities of the model weights to the velocity fields.
arXiv Detail & Related papers (2021-05-03T17:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.