Transport Network, Graph, and Air Pollution
- URL: http://arxiv.org/abs/2506.01164v1
- Date: Sun, 01 Jun 2025 20:54:14 GMT
- Title: Transport Network, Graph, and Air Pollution
- Authors: Nan Xu,
- Abstract summary: The study finds geometric patterns of pollution-indicated transport networks through 0.3 million image interpretations of global cities.<n> Strategies such as improved connectivity, more balanced road types and the avoidance of extreme clustering coefficient are identified as beneficial for alleviated pollution.
- Score: 12.749193378606064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollution can be studied in the urban structure regulated by transport networks. Transport networks can be studied as geometric and topological graph characteristics through designed models. Current studies do not offer a comprehensive view as limited models with insufficient features are examined. Our study finds geometric patterns of pollution-indicated transport networks through 0.3 million image interpretations of global cities. These are then described as part of 12 indices to investigate the network-pollution correlation. Strategies such as improved connectivity, more balanced road types and the avoidance of extreme clustering coefficient are identified as beneficial for alleviated pollution. As a graph-only study, it informs superior urban planning by separating the impact of permanent infrastructure from that of derived development for a more focused and efficient effort toward pollution reduction.
Related papers
- Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion [51.198001060683296]
Networked urban systems facilitate the flow of people, resources, and services.<n>Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency.<n>This paper addresses this trade-off by drawing inspiration from physical laws to inform essential model designs.
arXiv Detail & Related papers (2025-07-31T01:24:01Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - State estimation of urban air pollution with statistical, physical, and
super-learning graph models [0.0]
We introduce different reconstruction methods based on posing the problem on city graphs.
Our strategies can be classified as fully data-driven, physics-driven, or hybrid.
The performance of the methods is tested in the case of the inner city of Paris, France.
arXiv Detail & Related papers (2024-02-05T08:42:39Z) - Prediction of Transportation Index for Urban Patterns in Small and
Medium-sized Indian Cities using Hybrid RidgeGAN Model [0.0]
This research addresses several challenges in predicting the urban transportation index for small and medium-sized Indian cities.
A hybrid framework based on Kernel Ridge Regression (KRR) and CityGAN is introduced to predict transportation index.
The proposed hybrid pipeline, we call it RidgeGAN model, can evaluate the sustainability of urban sprawl.
arXiv Detail & Related papers (2023-06-09T15:05:40Z) - Spatiotemporal Graph Convolutional Recurrent Neural Network Model for
Citywide Air Pollution Forecasting [0.0]
Air pollution varies in a manner and depends on many complicated factors.
An image-based representation may not be ideal as air pollution and other impact factors have natural graph structures.
A Graph Convolutional Network (GCN) can efficiently represent the spatial features of air quality readings in the whole city.
Our approach is superior to a hybrid GCN-based method in a real-world air pollution dataset.
arXiv Detail & Related papers (2023-04-25T07:57:07Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Robust Graph Representation Learning for Local Corruption Recovery [47.656530383080366]
This work establishes a graph learning scheme that automatically detects (locally) corrupted feature attributes.
The detection operation leverages a graph autoencoder, which does not make any assumptions about the distribution of the local corruptions.
The proposed model can recover a robust graph representation from black-box poisoning and achieve excellent performance.
arXiv Detail & Related papers (2022-02-10T10:06:22Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Conditional Generative Adversarial Networks to Model Urban Outdoor Air
Pollution [0.8122270502556374]
We propose to train models able to generate synthetic nitrogen dioxide daily time series according to a given classification.
The proposed approach is able to generate accurate and diverse pollution daily time series, while requiring reduced computational time.
arXiv Detail & Related papers (2020-10-05T18:01:10Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
We propose a unified Physical-Virtual Collaboration Graph Network (PVCGN), which can effectively learn the complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the realistic topology of the studied metro system.
A similarity graph and a correlation graph are built with virtual topologies under the guidance of the inter-station passenger flow similarity and correlation.
arXiv Detail & Related papers (2020-01-14T16:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.