GraphSCENE: On-Demand Critical Scenario Generation for Autonomous Vehicles in Simulation
- URL: http://arxiv.org/abs/2410.13514v2
- Date: Tue, 11 Mar 2025 14:22:17 GMT
- Title: GraphSCENE: On-Demand Critical Scenario Generation for Autonomous Vehicles in Simulation
- Authors: Efimia Panagiotaki, Georgi Pramatarov, Lars Kunze, Daniele De Martini,
- Abstract summary: This work introduces a novel method that generates dynamic temporal scene graphs corresponding to diverse traffic scenarios, on-demand, tailored to user-defined preferences.<n>A temporal Graph Neural Network (GNN) model learns to predict relationships between ego-vehicle agents and static structures, guided by real-world interaction patterns.<n>We render the predicted scenarios in simulation to further demonstrate their effectiveness as testing environments for AV agents.
- Score: 7.542220697870245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Testing and validating Autonomous Vehicle (AV) performance in safety-critical and diverse scenarios is crucial before real-world deployment. However, manually creating such scenarios in simulation remains a significant and time-consuming challenge. This work introduces a novel method that generates dynamic temporal scene graphs corresponding to diverse traffic scenarios, on-demand, tailored to user-defined preferences, such as AV actions, sets of dynamic agents, and criticality levels. A temporal Graph Neural Network (GNN) model learns to predict relationships between ego-vehicle, agents, and static structures, guided by real-world spatiotemporal interaction patterns and constrained by an ontology that restricts predictions to semantically valid links. Our model consistently outperforms the baselines in accurately generating links corresponding to the requested scenarios. We render the predicted scenarios in simulation to further demonstrate their effectiveness as testing environments for AV agents.
Related papers
- Safety-Critical Traffic Simulation with Guided Latent Diffusion Model [8.011306318131458]
Safety-critical traffic simulation plays a crucial role in evaluating autonomous driving systems.
We propose a guided latent diffusion model (LDM) capable of generating physically realistic and adversarial scenarios.
Our work provides an effective tool for realistic safety-critical scenario simulation, paving the way for more robust evaluation of autonomous driving systems.
arXiv Detail & Related papers (2025-05-01T13:33:34Z) - Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - Testing Generalizability in Causal Inference [3.547529079746247]
There is no formal procedure for statistically evaluating generalizability in machine learning algorithms.
We propose a systematic and quantitative framework for evaluating model generalizability in causal inference settings.
By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work.
arXiv Detail & Related papers (2024-11-05T11:44:00Z) - Compositional simulation-based inference for time series [21.9975782468709]
simulators frequently emulate real-world dynamics through thousands of single-state transitions over time.
We propose an SBI framework that can exploit such Markovian simulators by locally identifying parameters consistent with individual state transitions.
We then compose these local results to obtain a posterior over parameters that align with the entire time series observation.
arXiv Detail & Related papers (2024-11-05T01:55:07Z) - OmniPose6D: Towards Short-Term Object Pose Tracking in Dynamic Scenes from Monocular RGB [40.62577054196799]
We introduce a large-scale synthetic dataset OmniPose6D, crafted to mirror the diversity of real-world conditions.
We present a benchmarking framework for a comprehensive comparison of pose tracking algorithms.
arXiv Detail & Related papers (2024-10-09T09:01:40Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
We present nuPlan, a real-world motion planning benchmark that captures multi-agent interactions.
We learn to model such unique behaviors with BehaviorNet, a graph convolutional neural network (GCNN)
We also present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Graph Convolutional Networks for Complex Traffic Scenario Classification [0.7919810878571297]
A scenario-based testing approach can reduce the time required to obtain statistically significant evidence of the safety of Automated Driving Systems.
Most methods on scenario classification do not work for complex scenarios with diverse environments.
We propose a method for complex traffic scenario classification that is able to model the interaction of a vehicle with the environment.
arXiv Detail & Related papers (2023-10-26T20:51:24Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
We present DJINN - a diffusion based method of generating traffic scenarios.
Our approach jointly diffuses the trajectories of all agents, conditioned on a flexible set of state observations from the past, present, or future.
We show how DJINN flexibly enables direct test-time sampling from a variety of valuable conditional distributions.
arXiv Detail & Related papers (2023-09-21T22:10:20Z) - Dynamic Scenario Representation Learning for Motion Forecasting with
Heterogeneous Graph Convolutional Recurrent Networks [25.383615554172778]
We resort to dynamic heterogeneous graphs to model the evolving scenario.
We design a novel heterogeneous graphal recurrent network, aggregating diverse interaction information.
With a motion forecasting decoder, our model predicts realistic and multi-modal future trajectories of agents.
arXiv Detail & Related papers (2023-03-08T04:10:04Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Querying Labelled Data with Scenario Programs for Sim-to-Real Validation [5.8720142291102135]
A fundamental question remains: are AV failure scenarios identified in simulation meaningful in reality, i.e., are they reproducible on the real system?
An approach to validate simulated failure scenarios is to identify instances of the scenario in a corpus of real data, and check if the failure persists on the real data.
We propose a formal definition of what it means for a labelled data item to match an abstract scenario, encoded as a scenario program using the SCENIC probabilistic programming language.
arXiv Detail & Related papers (2021-12-01T01:04:13Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.