ReFoCUS: Reinforcement-guided Frame Optimization for Contextual Understanding
- URL: http://arxiv.org/abs/2506.01274v1
- Date: Mon, 02 Jun 2025 03:08:07 GMT
- Title: ReFoCUS: Reinforcement-guided Frame Optimization for Contextual Understanding
- Authors: Hosu Lee, Junho Kim, Hyunjun Kim, Yong Man Ro,
- Abstract summary: We introduce ReFoCUS (Reinforcement-guided Frame Optimization for Contextual UnderStanding), a novel frame-level policy optimization framework.<n>ReFoCUS learns a frame selection policy via reinforcement learning, using reward signals derived from a reference LMM to reflect the model's intrinsic preferences for frames.<n>Our approach consistently improves reasoning performance across multiple video QA benchmarks.
- Score: 52.050036778325094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in Large Multi-modal Models (LMMs) has enabled effective vision-language reasoning, yet the ability to understand video content remains constrained by suboptimal frame selection strategies. Existing approaches often rely on static heuristics or external retrieval modules to feed frame information into video-LLMs, which may fail to provide the query-relevant information. In this work, we introduce ReFoCUS (Reinforcement-guided Frame Optimization for Contextual UnderStanding), a novel frame-level policy optimization framework that shifts the optimization target from textual responses to visual input selection. ReFoCUS learns a frame selection policy via reinforcement learning, using reward signals derived from a reference LMM to reflect the model's intrinsic preferences for frames that best support temporally grounded responses. To efficiently explore the large combinatorial frame space, we employ an autoregressive, conditional selection architecture that ensures temporal coherence while reducing complexity. Our approach does not require explicit supervision at the frame-level and consistently improves reasoning performance across multiple video QA benchmarks, highlighting the benefits of aligning frame selection with model-internal utility.
Related papers
- Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs [13.306662159600677]
We introduce video QFrame, a novel approach for adaptive frame selection and multi-temporal scaling.<n>Q-Frame employs a training-free, plug-and-play strategy generated by a text-image matching network like CLIP.<n>We demonstrate Q-Frame's effectiveness through extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2025-06-27T11:30:51Z) - ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning [68.76048244253582]
We introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in video understanding.<n>ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error.<n>ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks.
arXiv Detail & Related papers (2025-05-21T12:29:40Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [2.368662284133926]
We present a framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning.<n>Our framework integrates two complementary techniques: Policy-d RetrievalAugmented Generation (PORAG) and Adaptive Token-Layer Attention Scoring (ATLAS)<n>Our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems.
arXiv Detail & Related papers (2025-04-02T01:16:10Z) - Adaptive Video Understanding Agent: Enhancing efficiency with dynamic frame sampling and feedback-driven reasoning [29.89820310679906]
We propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding.
A key aspect of our method is query-adaptive frame sampling, which leverages the reasoning capabilities of LLMs to process only the most relevant frames in real-time.
We evaluate our method across several video understanding benchmarks and demonstrate that not only it enhances state-of-the-art performance but also improves efficiency by reducing the number of frames sampled.
arXiv Detail & Related papers (2024-10-26T19:01:06Z) - An Empirical Study of Frame Selection for Text-to-Video Retrieval [62.28080029331507]
Text-to-video retrieval (TVR) aims to find the most relevant video in a large video gallery given a query text.
Existing methods typically select a subset of frames within a video to represent the video content for TVR.
In this paper, we make the first empirical study of frame selection for TVR.
arXiv Detail & Related papers (2023-11-01T05:03:48Z) - Continuous Space-Time Video Super-Resolution Utilizing Long-Range
Temporal Information [48.20843501171717]
We propose a continuous ST-VSR (CSTVSR) method that can convert the given video to any frame rate and spatial resolution.
We show that the proposed algorithm has good flexibility and achieves better performance on various datasets.
arXiv Detail & Related papers (2023-02-26T08:02:39Z) - Temporal Consistency Learning of inter-frames for Video Super-Resolution [38.26035126565062]
Video super-resolution (VSR) is a task that aims to reconstruct high-resolution (HR) frames from the low-resolution (LR) reference frame and multiple neighboring frames.
Existing methods generally explore information propagation and frame alignment to improve the performance of VSR.
We propose a Temporal Consistency learning Network (TCNet) for VSR in an end-to-end manner, to enhance the consistency of the reconstructed videos.
arXiv Detail & Related papers (2022-11-03T08:23:57Z) - MHSCNet: A Multimodal Hierarchical Shot-aware Convolutional Network for
Video Summarization [61.69587867308656]
We propose a multimodal hierarchical shot-aware convolutional network, denoted as MHSCNet, to enhance the frame-wise representation.
Based on the learned shot-aware representations, MHSCNet can predict the frame-level importance score in the local and global view of the video.
arXiv Detail & Related papers (2022-04-18T14:53:33Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.