論文の概要: STSA: Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
- arxiv url: http://arxiv.org/abs/2506.01327v1
- Date: Mon, 02 Jun 2025 05:14:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.039964
- Title: STSA: Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
- Title(参考訳): STSA:時空間統計集計による連携型クラスインクリメンタルラーニング
- Authors: Zenghao Guan, Guojun Zhu, Yucan Zhou, Wu Liu, Weiping Wang, Jiebo Luo, Xiaoyan Gu,
- Abstract要約: Federated Class-Incremental Learning (FCIL)は、分散データからクラスインクリメンタルラーニングを可能にする。
本稿では,空間的(クライアント間)と時間的(ステージ間)の両方に特徴統計を集約する新しい手法を提案する。
本手法は, 性能, 柔軟性, 通信効率の両面で, 最先端のFCIL法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 64.48462746540156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Class-Incremental Learning (FCIL) enables Class-Incremental Learning (CIL) from distributed data. Existing FCIL methods typically integrate old knowledge preservation into local client training. However, these methods cannot avoid spatial-temporal client drift caused by data heterogeneity and often incur significant computational and communication overhead, limiting practical deployment. To address these challenges simultaneously, we propose a novel approach, Spatial-Temporal Statistics Aggregation (STSA), which provides a unified framework to aggregate feature statistics both spatially (across clients) and temporally (across stages). The aggregated feature statistics are unaffected by data heterogeneity and can be used to update the classifier in closed form at each stage. Additionally, we introduce STSA-E, a communication-efficient variant with theoretical guarantees, achieving similar performance to STSA-E with much lower communication overhead. Extensive experiments on three widely used FCIL datasets, with varying degrees of data heterogeneity, show that our method outperforms state-of-the-art FCIL methods in terms of performance, flexibility, and both communication and computation efficiency.
- Abstract(参考訳): Federated Class-Incremental Learning (FCIL)は、分散データからクラスインクリメンタルラーニング(CIL)を可能にする。
既存のFCILメソッドは通常、古い知識保存をローカルクライアントトレーニングに統合する。
しかし、これらの手法はデータの不均一性に起因する空間的時間的クライアントのドリフトを回避することができず、しばしば計算と通信のオーバーヘッドが著しくなり、実際の展開が制限される。
これらの課題を同時に解決するために,時空間統計集計(STSA)という新しい手法を提案する。
集計された特徴統計はデータの不均一性の影響を受けず、各段階で閉形式で分類器を更新することができる。
また,STSA-Eは理論的保証を持つ通信効率のよい変種であり,通信オーバーヘッドがはるかに低いSTSA-Eに類似した性能を実現する。
データの不均一度が変化する3種類のFCILデータセットに対する大規模な実験により,本手法は性能,柔軟性,通信効率および計算効率の両面で,最先端のFCIL法よりも優れていることが示された。
関連論文リスト
- FedCTTA: A Collaborative Approach to Continual Test-Time Adaptation in Federated Learning [0.956984177686999]
Federated Learning (FL)は、生データを共有せずに、分散クライアント間で協調的なモデルトレーニングを可能にする。
FLモデルは、トレーニングとデプロイメントの間の分散シフトによって、しばしばパフォーマンスが低下する。
我々は、フェデレートされた適応のためのプライバシー保護と計算効率のよいフレームワークであるFederated Continual Test-Time Adaptation (FedCTTA)を提案する。
論文 参考訳(メタデータ) (2025-05-19T18:29:51Z) - AFCL: Analytic Federated Continual Learning for Spatio-Temporal Invariance of Non-IID Data [45.66391633579935]
Federated Continual Learning (FCL)は、分散クライアントがオンラインタスクストリームからグローバルモデルを協調的にトレーニングすることを可能にする。
FCL法は,分散クライアント間の空間的データ不均一性とオンラインタスク間の時間的データ不均一性の両方の課題に直面している。
凍結抽出特徴量から解析的解(すなわち閉形式)を導出することにより,解析的フェデレート連続学習(AFCL)と呼ばれる勾配のない手法を提案する。
論文 参考訳(メタデータ) (2025-05-18T05:55:09Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Decoupled Federated Learning on Long-Tailed and Non-IID data with
Feature Statistics [20.781607752797445]
特徴統計量(DFL-FS)を用いた2段階分離型フェデレーション学習フレームワークを提案する。
最初の段階では、サーバは、マスキングされたローカル特徴統計クラスタリングによってクライアントのクラスカバレッジ分布を推定する。
第2段階では、DFL-FSは、グローバルな特徴統計に基づくフェデレーションされた特徴再生を使用して、長い尾を持つデータ分布へのモデルの適応性を高める。
論文 参考訳(メタデータ) (2024-03-13T09:24:59Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
フェデレーション学習は、エッジデバイスがデータを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
我々は、実際のデータセットで発見されたクラスタスキュード非IIDと呼ばれる新しいタイプの非IIDデータに取り組む。
本稿では,クラスタ間の平等を保証するアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2023-02-21T02:53:37Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
本稿では,新しい産業メタバースに実用FLを取り入れたHFEDMSを提案する。
動的グルーピングとトレーニングモード変換によってデータの均一性を低下させる。
そして、圧縮された履歴データセマンティクスを融合することで、忘れられた知識を補う。
ストリームされた非I.d.FEMNISTデータセットに対して,368個のシミュレーションデバイスを用いて実験を行った。
論文 参考訳(メタデータ) (2022-11-07T04:33:24Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。