論文の概要: Distributionally Robust Learning in Survival Analysis
- arxiv url: http://arxiv.org/abs/2506.01348v2
- Date: Sat, 07 Jun 2025 21:40:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 14:13:04.105976
- Title: Distributionally Robust Learning in Survival Analysis
- Title(参考訳): 生存分析における分布ロバスト学習
- Authors: Yeping Jin, Lauren Wise, Ioannis Ch. Paschalidis,
- Abstract要約: 我々は、分散ロバスト学習(DRL)アプローチをCoxレグレッションに組み込む革新的なアプローチを導入する。
DRLフレームワークをワッサーシュタイン距離に基づく曖昧性集合で定式化することにより、基礎となるデータ分布の仮定に敏感でない変種コックスモデルを開発する。
従来の手法と比較して,予測精度とロバスト性の観点から,回帰モデルが優れた性能を発揮することを示す。
- 参考スコア(独自算出の注目度): 6.946903076677842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an innovative approach that incorporates a Distributionally Robust Learning (DRL) approach into Cox regression to enhance the robustness and accuracy of survival predictions. By formulating a DRL framework with a Wasserstein distance-based ambiguity set, we develop a variant Cox model that is less sensitive to assumptions about the underlying data distribution and more resilient to model misspecification and data perturbations. By leveraging Wasserstein duality, we reformulate the original min-max DRL problem into a tractable regularized empirical risk minimization problem, which can be computed by exponential conic programming. We provide guarantees on the finite sample behavior of our DRL-Cox model. Moreover, through extensive simulations and real world case studies, we demonstrate that our regression model achieves superior performance in terms of prediction accuracy and robustness compared with traditional methods.
- Abstract(参考訳): 我々は,分散ロバスト学習(DRL)アプローチをCox回帰に取り入れ,生存予測の堅牢性と精度を高める革新的な手法を提案する。
DRLフレームワークをワッサーシュタイン距離に基づくあいまいさセットで定式化することにより、基礎となるデータ分布に関する仮定に敏感でなく、モデルのミススペクテーションやデータ摂動により耐性のある変種Coxモデルを開発する。
ワッサースタイン双対性を利用して、元の min-max DRL 問題を指数円錐計画法で計算可能な、トラクタブルな正規化経験的リスク最小化問題に再構成する。
DRL-Coxモデルの有限サンプル挙動を保証します。
さらに,大規模なシミュレーションや実世界の事例研究を通じて,従来の手法と比較して,予測精度やロバスト性の観点から,回帰モデルの方が優れた性能を示すことを示す。
関連論文リスト
- Deep Partially Linear Transformation Model for Right-Censored Survival Data [9.991327369572819]
本稿では,推定,推測,予測のための汎用かつ柔軟なフレームワークとして,深部部分線形変換モデル(DPLTM)を提案する。
総合シミュレーション研究は、推定精度と予測パワーの両方の観点から提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-10T15:50:43Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
ニューラルネットワーク生成の標準パラダイムは、最適化方法として最大推定(MLE)を採用する。
言語生成に適用するための実践的境界を開発する。
本稿では,TVD推定のトレードオフのバランスをとるためのTaiLr の目標について紹介する。
論文 参考訳(メタデータ) (2023-02-26T16:32:52Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
オフライン強化学習は、積極的に探索することなく、履歴データから意思決定を行うことを学習することを目的としている。
環境の不確実性や変動性から,デプロイされた環境が,ヒストリデータセットの収集に使用される名目上のものから逸脱した場合でも,良好に機能するロバストなポリシーを学ぶことが重要である。
オフラインRLの分布的ロバストな定式化を考察し、有限水平および無限水平の両方でクルバック・リーブラー発散によって指定された不確実性セットを持つロバストマルコフ決定過程に着目する。
論文 参考訳(メタデータ) (2022-08-11T11:55:31Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
本稿では,テキスト生成で遭遇する大規模なサンプル空間において,効率よく安定な自動回帰シーケンス生成モデルのトレーニング手法を提案する。
本手法は,品質と多様性の両面で,最大類似度推定や他の最先端シーケンス生成モデルよりも安定に優れている。
論文 参考訳(メタデータ) (2020-07-12T15:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。