AI Scientists Fail Without Strong Implementation Capability
- URL: http://arxiv.org/abs/2506.01372v2
- Date: Mon, 09 Jun 2025 09:01:24 GMT
- Title: AI Scientists Fail Without Strong Implementation Capability
- Authors: Minjun Zhu, Qiujie Xie, Yixuan Weng, Jian Wu, Zhen Lin, Linyi Yang, Yue Zhang,
- Abstract summary: The emergence of Artificial Intelligence (AI) Scientist represents a paradigm shift in scientific discovery.<n>Recent AI Scientist studies demonstrate sufficient capabilities for independent scientific discovery.<n>Despite this substantial progress, AI Scientist has yet to produce a groundbreaking achievement in the domain of computer science.
- Score: 33.232300349142285
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of Artificial Intelligence (AI) Scientist represents a paradigm shift in scientific discovery, with large language models (LLMs) taking the lead as the primary executor in the entire scientific workflow from idea generation to experiment implementation. Recent AI Scientist studies demonstrate sufficient capabilities for independent scientific discovery, with the generated research reports gaining acceptance at the ICLR 2025 workshop and ACL 2025, arguing that a human-level AI Scientist, capable of uncovering phenomena previously unknown to humans, may be imminent. Despite this substantial progress, AI Scientist has yet to produce a groundbreaking achievement in the domain of computer science on par with automated scientific tools. Based on extensive quantitative evidence from existing benchmarks in complex engineering tasks and a systematic evaluation assess 28 research papers generated by five advanced AI Scientist systems, we argue that \textbf{the fundamental bottleneck for AI Scientists lies in their capability to execute the requisite verification procedures.} Current AI Scientist systems lack the execution capabilities needed to execute rigorous experiments and produce high-quality scientific papers. To better illustrate the root cause of this \textbf{implementation gap}, we provide an in-depth discussion on the fundamental limitations of AI Scientist. This position paper aims to call for the participants in the community to bridge the implementation gap.
Related papers
- How Far Are AI Scientists from Changing the World? [30.483767443654504]
We focus on the central question: How far are AI scientists from changing the world and reshaping the scientific research paradigm?<n>We provide a prospect-driven review that comprehensively analyzes the current achievements of AI Scientist systems.<n>We hope this survey will contribute to a clearer understanding of limitations of current AI Scientist systems.
arXiv Detail & Related papers (2025-07-31T06:32:06Z) - AI4Research: A Survey of Artificial Intelligence for Scientific Research [55.5452803680643]
We present a comprehensive survey on AI for Research (AI4Research)<n>We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research.<n>We identify key research gaps and highlight promising future directions.
arXiv Detail & Related papers (2025-07-02T17:19:20Z) - Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
The Science of Science (SoS) explores the mechanisms underlying scientific discovery.<n>The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS.<n>We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them.
arXiv Detail & Related papers (2025-05-17T15:01:33Z) - The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search [16.93028430619359]
The AI Scientist-v2 is an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper.<n>It iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts.<n>One manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review.
arXiv Detail & Related papers (2025-04-10T18:44:41Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.<n>AGS aims to significantly reduce the time and resources needed for scientific discovery.<n>As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Unlocking the Potential of AI Researchers in Scientific Discovery: What Is Missing? [20.94708392671015]
We project that AI4Science's share of total publications will rise from 3.57% in 2024 to approximately 25% by 2050.<n>We propose structured and actionable strategies to position AI researchers at the forefront of scientific discovery.
arXiv Detail & Related papers (2025-03-05T09:29:05Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks.<n>We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery.
arXiv Detail & Related papers (2024-12-16T03:52:20Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.<n>VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.<n>We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.